Важнейшие публикации: |
(На английском языке)
- Bojarinova J., Kavokin K., Cherbunin R., Sannikov D., Fedorishcheva A., Pakhomov A., Chernetsov N. 2023. Sensitivity threshold of avian magnetic compass to oscillating magnetic field is species specific. Behavioral Ecology and Sociobiology 77: 6. https://doi.org/10.1007/s00265-022-03282-7
- Dufour P., Åkesson S., Hellström M., Hewson C., Lagerveld S., Mitchell L., Chernetsov N., Schmaljohann H., Crochet P.-A. 2022. The Yellow-browed Warbler (Phylloscopus inornatus) as a model to understand vagrancy and its potential for the evolution of new migratory routes. Movement Ecology 10: 59. https://doi.org/10.1186/s40462-022-00345-2
- Rotov A.Y., Goriachenkov A.A., Cherbunin R.V., Firsov M.L., Chernetsov N., Astakhova L.A. 2022. Magnetoreceptory function of European Robin retina: Electrophysiological and morphological non-homogeneity. Cells 11: 3056. https://doi.org/10.3390/cells11193056
- Pakhomov A., Prokshina A., Cellarius F., Mouritsen H., Chernetsov N. 2022. Access to the sky near the horizon and stars does not play a crucial role in compass calibration of European songbird migrants. Journal of Experimental Biology 225 (16): jeb243631.https://doi.org/10.1242/jeb.243631
- Jetz W., Tertitski G., Kays R., Mueller U., Wikelski M., Åkesson S., Anisimov Y., Antonov A., Arnold W., Bairlein F., Baltà O., Baum D., Beck M., Belonovich O., Belyaev M., Berger M., Berthold P., Bittner S., Blake S., Block B., Bloche D., Boehning-Gaese K., Bohrer G., Bojarinova J., Bommas G., Bourski O., Bragin A., Bragin A., Bristol R., Brlík V., Bulyuk V., Cagnacci F., Carlson B., Chapple T.K., Chefira K.F., Cheng Y., Chernetsov N., Cierlik G., Christiansen S.S., Clarabuch O., Cochran W., Cornelius J.M., Couzin I., Crofoot M.C., Cruz S., Davydov A., Davidson S., Dech S., Dechmann D., Demidova E., Dettmann J., Dittmar S., Dorofeev D., Drenckhahn D., Dubyanskiy V., Egorov N., Ehnbom S., Ellis-Soto D., Ewald R., Feare C., Fefelov I., Fehérvári P., Fiedler W., Flack A., Froböse M., Fufachev I., Futoran P., Gabyshev V., Gagliardo A., Garthe S., Gashkov S., Gibson L., Goymann W., Gruppe G., Guglielmo C., Hartl P., Hedenström A., Hegemann A., Heine G., Hieber Ruiz M., Hofer H., Huber F., Hurme E., Iannarilli F., Illa M., Isaev A., Jakobsen B., Jenni L., Jenni-Eiermann S., Jesmer B., Jiguet F., Karimova T., Kasdin N.J., Kazansky F., Kirillin R., Klinner T., Knopp A., Kölzsch A., Kondratyev A., Krondorf M., Ktitorov P., Kulikova O., Kumar R.S., Künzer C., Larionov A., Larose C., Liechti F., Linek N., Lohr A., Lushchekina A., Mansfield K, Matantseva M., Markovets M., Marra P., Masello J.F., Melzheimer J., Menz M.H.M., Menzie S., Meshcheryagina S., Miquelle D., Morozov V., Mukhin A., Müller I., Mueller T., Navedo J.G., Nathan R., Nelson L., Németh Z., Newman S., Norris R., Nsengimana O., Okhlopkov I., Oleś W., Oliver R., O’Mara T., Palatitz P., Partecke J., Pavlick R., Pedenko A., Pham J., Piechowski D., Pierce A., Piersma T., Pitz W., Plettemeier D., Pokrovskaya I., Pokrovskaya L., Pokrovsky I., Pot M., Procházka P., Quillfeldt P., Rakhimberdiev E., Ramenofsky M., Ranipeta A., Rapczyński J., Remisiewicz M., Rienks F., Rozhnov V., Rutz C., Sakhvon V., Sapir N., Safi K., Schäuffelhut F., Schimel D., Schmidt A., Shamoun-Baranes J., Sharikov A., Shearer L., Shemyakin E., Sherub S., Shipley R., Sica Y., Smith T.B., Simonov S., Snell K., Sokolov A., Sokolov V., Solomina O., Spina F., Spoelstra K., Storhas M., Sviridova T., Swenson Jr G., Taylor P., Thorup K., Tsvey A., Tucker M., Turner W., Twizeyimana I., van der Jeugd H., van Schalkwyk L., van Toor M., Viljoen P., Visser M.E., Volkmer T., Volkov A., Volkov S., Volkow O., von Rönn J.A.C., Vorneweg B., Wachter B., Waldenström J., Weber N., Wegmann M., Wehr A., Weinzierl R., Weppler J., Wilcove D., Wild T., Williams H.J., Wilshire J., Wingfield J., Wunder M., Yachmennikova A., Yanco S., Yohannes E., Zeller A., Ziegler C., Zięcik A., Zook C. 2022. Biological earth observation with animal sensors. Trends in Ecology & Evolution 37 (4): 293–298. https://doi.org/10.1016/j.tree.2021.11.011
- Brlík V., Pipek P., Brandis K., Chernetsov N., Costa F.J.V., L.G. Herrera M., Kiat Y., Lanctot R.B., Marra P.P., Norris D.R., Nwaogu C.J., Quillfeldt P., Saalfeld S.T., Stricker C.A., Thomson R.L., Zhao T., Procházka P. 2022. The reuse of avian samples: opportunities, pitfalls, and a solution. Ibis 164 (1): 343–349. https://doi.org/10.1111/ibi.12997
- Chernetsov N., Nikishena I., Zavarzina N., Kulbach O. 2021. Perception of static magnetic field by humans: a review. Biological Communications 66 (2): 171–178. https://doi.org/10.21638/spbu03.2021.208
- Kishkinev D., Packmor F., Zechmeister T., Winkler H.-C., Chernetsov N., Mouritsen H., Holland R.A. 2021. Navigation by extrapolation of geomagnetic cues in a migratory songbird. Current Biology 31 (7): 1563–1569.e4.
https://doi.org/10.1016/j.cub.2021.01.051
- Zolotareva A., Utvenko G., Romanova N., Pakhomov A., Chernetsov N. 2021. Ontogeny of the star compass in birds: pied flycatchers (Ficedula hypoleuca) can establish the star compass in spring. Journal of Experimental Biology 224 (3): jeb237875. https://doi.org/10.1242/jeb.237875
- Astakhova L.A., Rotov A.Yu., Cherbunin R.V., Goriachenkov A.A., Kavokin K.V., Firsov M.L., Chernetsov N. 2020. Electroretinographic study of the magnetic compass in European robins. Proceedings of the Royal Society B 287 (1940): 20202507. https://doi.org/10.1098/rspb.2020.2507
- Pakhomov A., Chernetsov N. 2020. A hierarchy of compass systems in migratory birds. Biological Communications 65(3): 262–276. https://doi.org/10.21638/spbu03.2020.306
- Bojarinova J., Kavokin K., Pakhomov A., Cherbunin R., Anashina A., Erokhina M., Ershova M., Chernetsov N. 2020. Magnetic compass of garden warblers is not affected by oscillating magnetic fields applied to their eyes. Scientific Reports 10: 3473. https://doi.org/10.1038/s41598-020-60383-x
- Rotov A.Yu., Cherbunin R.V., Anashina A., Kavokin K.V., Chernetsov N., Firsov M.L. 2020. Searching for magnetic compass mechanism in pigeon retinal photoreceptors. PLOS ONE 15 (3): e0229142. https://doi.org/10.1371/journal.pone.0229142
- Astakhova L.A., Rotov A.Yu., Kavokin K.V., Chernetsov N.S., Firsov M.L. 2020. Relationship between avian magnetic compass and photoreception: hypotheses and unresolved questions. Biology Bulletin Reviews 10 (1): 1–10. https://doi.org/10.1134/S2079086420010028
- Chernetsov N., Pakhomov A., Davydov A., Cellarius F., Mouritsen H. 2020. No evidence for the use of magnetic declination for migratory navigation in two songbird species. PLOS ONE 15 (4): e0232136. https://doi.org/10.1371/journal.pone.0232136
- Pakhomov A., Anashina A., Heyers D., Kobylkov D., Mouritsen H., Chernetsov N. 2018. Magnetic map navigation in a migratory songbird requires trigeminal input. Scientific Reports 8: 11975. https://doi.org/10.1038/s41598-018-30477-8
- Rotov A.Yu., Cherbunin R.V., Kavokin K.V., Chernetsov N.S., Firsov M.L., Astakhova L.A. 2018. Magnetoreception in the retina of the domestic pigeon Columbia livia: a retinographic search. Journal of Evolutionary Biochemistry and Physiology 54 (6): 498–501. https://doi.org/10.1134/S00220930180600121
- Chernetsov N., Pakhomov A., Kobylkov D., Kishkinev D., Holland R.A., Mouritsen H. 2017. Migratory Eurasian reed warblers can use magnetic declination to solve the longitude problem. Current Biology 27 (17): 2647–2651. https://doi.org/10.1016/j.cub.2017.07.024
- Pakhomov A., Bojarinova J., Cherbunin R., Chetverikova R., Grigoryev P.S., Kavokin K., Kobylkov D., Lubkovskaja R., Chernetsov N. 2017. Very weak oscillating magnetic field disrupts the magnetic compass of songbird migrants. J. R. Soc. Interface 14: 20170364 https://doi.org/10.1098/rsif.2017.0364
- Komolkin A.V., Kupriyanov P., Chudin A., Bojarinova J., Kavokin K., Chernetsov N. 2017. Theoretically possible spatial accuracy of geomagnetic maps used by migrating animals. J. R. Soc. Interface 14: 20161002. https://doi.org/10.1098/rsif.2016.1002
- Pakhomov A., Anashina A., Chernetsov N. 2017. Further evidence of a time-independent stellar compass in a night-migrating songbird. Behavioral Ecology and Sociobiology, 71:48. https://doi.org/10.1007/s00265-017-2279-3
- Ergen A.G., Chernetsov N., Lundberg M., Åkesson S., Bensch S. 2017. The use of molecular diagnostics to infer migration directions of Willow Warblers in the southeast Baltic. Journal of Ornithology 158:737-743. https://doi.org/10.1007/s10336-017-1434-y
- Chernetsov N. 2017. Compass systems. Journal of Comparative Physiology A 203:747-753. https://doi.org/10.1007/s00359-016-1140-x
- Kishkinev D., Chernetsov N., Pakhomov A., Heyers D., Mouritsen H. 2015. Eurasian reed warblers compensate for virtual magnetic displacement. Current Biology 25 (19): R822-R824. https://doi.org/10.1016/j.cub.2015.08.012
- Chernetsov N. 2015. Avian compass systems: do all migratory species possess all three? Journal of Avian Biology 46 (4): 342–343. https://doi.org/10.1111/jav.00593
- Kishkinev D.A., Chernetsov N.S. 2015. Magnetoreception systems in birds: a review of current research. Biology Bulletin Reviews 5: 46-62. https://doi.org/10.1134/S2079086415010041
- Kavokin K., Chernetsov N., Pakhomov A., Bojarinova J., Kobylkov D., Namozov B. 2014. Magnetic orientation of garden warblers (Sylvia borin) under 1.4 MHz radiofrequency magnetic field. J. R. Soc. Interface 11: 20140451. https://doi.org/10.1098/rsif.2014.0451
- Pakhomov A., Chernetsov N. 2014. Early evening activity of migratory Garden Warbler Sylvia borin: compass calibration activity? Journal of Ornithology 155: 621-630. https://doi.org/10.1007/s10336-014-1044-x
- Kishkinev D., Chernetsov N., Heyers D., Mouritsen H. 2013. Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement. PLoS ONE 8 (6): e65847. https://doi.org/10.1371/journal.pone.0065847
- Mettler R., Schaefer H.M., Chernetsov N., Fiedler W., Hobson K.A., Ilieva M., Imhof E., Johnsen A., Renner S.C., Rolshausen G. Serrano D., Wesolowski T., Segelbacher T. 2013. Contrasting patterns of genetic differentiation among blackcaps (Sylvia atricapilla) with divergent migratory orientations in Europe. PLoS ONE 8(11): e81365. https://doi.org/10.1371/journal.pone.0081365
- Chernetsov N. 2012. Passerine migration: stopovers and flight. Springer Berlin Heidelberg. 184 p. https://doi.org/10.1007/978-3-642-29020-6
- Chernetsov N., Kishkinev D., Kosarev V., Bolshakov C.V. 2011. Not all songbirds calibrate their magnetic compass from twilight cues: a telemetry study. J. Exp. Biol. 214: 2540-2543. https://doi.org/10.1242/jeb.057729
- Kishkinev D., Chernetsov N., Mouritsen H. 2010. A double-clock or jetlag mechanism is unlikely to be involved in detection of east-west displacements in a long-distance avian migrant. Auk 127: 773-780. https://doi.org/10.1525/auk.2010.10032
- Chernetsov N. 2010. Recent experimental data on the energy costs of avian flight call for a revision of optimal migration theory. Auk 127: 232-234. https://doi.org/10.1525/auk.2009.09012
- Chernetsov N., Sokolov L.V., Kosarev V. 2009. Local survival rates of Pied Flycatchers Ficedula hypoleuca depend on their immigration status. Avian Ecology and Behaviour 16: 11-20.
- Chernetsov N., Kishkinev D., Gashkov S., Kosarev V., Bolshakov C.V. 2008. Migratory programme of juvenile pied flycatchers, Ficedula hypoleuca, from Siberia implies a detour around Central Asia. Animal Behaviour 75: 539-545. https://doi.org/10.1016/j.anbehav.2007.05.019
- Mukhin A., Chernetsov N., Kishkinev D. 2008. Acoustic information as a distant cue for habitat recognition by nocturnally migrating passerines during landfall. Behavioral Ecology 19: 716-723. https://doi.org/10.1093/beheco/arn025
- Chernetsov N., Kishkinev D., Mouritsen H. 2008. A long-distance avian migrant compensates for longitudinal displacement during spring migration. Current Biology 18: 188-190. https://doi.org/10.1016/j.cub.2008.01.018
(На русском языке)
Золотарёва А.Д., Чернецов Н.С. 2021. Астрономическое ориентирование у птиц. Зоологический журнал 100 (3): 333–343. https://doi.org/10.31857/S0044513421030119
Астахова Л.А., Ротов А.Ю., Кавокин К.В., Чернецов Н.С., Фирсов М.Л. 2019. Связь магнитного компаса и магниторецепции у птиц: гипотезы и нерешенные вопросы. Журнал общей биологии 80 (2): 83–94. https://doi.org/10.1134/S0044459619020040
Ротов А.Ю., Чербунин Р.В., Кавокин К.В., Чернецов Н.С., Фирсов М.Л., Астахова Л.А. 2018. Поиск магниторецепции в сетчатке домашних голубей Columba livia ретинографическим методом. Журнал эволюционной биохимии и физиологии 54 (6): 440–443. https://doi.org/10.1134/S0044452918060128
Чернецов Н.С. 2016. Ориентация и навигация мигрирующих птиц. Зоологический журнал 95 (2): 128-146. https://doi.org/10.7868/S0044513416020070
Кишкинёв Д.А., Чернецов Н.С. 2014. Магниторецепторные системы у птиц: обзор современных исследований. Журнал общей биологии 75 (2): 104-123.
Чернецов Н.С. 2010. Миграция воробьиных птиц: остановки и полёт. М., Т-во научных изданий КМК. 173 с.
Панов И.Н., Чернецов Н.С. 2010. Миграционная стратегия варакушки (Luscinia svecica) в Восточной Фенноскандии. Сообщение 1: Основные параметры миграционных остановок. Труды Зоологического института РАН 314 (1): 93-104.
Панов И.Н., Чернецов Н.С. 2010. Миграционная стратегия варакушки (Luscinia svecica) в Восточной Фенноскандии. Сообщение 2: Реакция на акустические маркеры и выбор биотопа на миграционной остановке. Труды Зоологического института РАН 314 (2): 173-183.
Чернецов Н.С., Булюк В.Н., Ктиторов П.С. 2010. Роль Джаныбекского оазиса как места миграционных остановок дендрофильных видов воробьиных птиц. Поволжский экологический журнал 2: 204-216.
|