Fractal and chaotic patterns in animal morphology

V.V. Isaeva

Proceedings of the Zoological Institute RAS, 2009, 313(Supplement 1): 199–218   ·   https://doi.org/10.31610/trudyzin/2009.supl.1.199

Full text  

Abstract

In the review the spatial organization of cells, cell ensembles, tissues and metazoan body are considered using the concepts of fractal geometry, topology and dynamic chaos theory. We investigated both the scenario of transition from chaos into order during self-organization of cells in vitro and the reverse scenario of transition from order to chaos in the fractal morphogenesis of metazoan cell systems. Chaotic features in animal morphology were identified and quantified. Fractal morphogenesis was studied using epithelial branching channels of gastrovascular system in the scyphomeduse Aurelia aurita and tracheal gill system in the mayfly larvae Siphlonurus immanis and Parameletus chelifer, as well as structures of colonial interna in rhizocephalan crustaceans Peltogasterella gracilis and Polyascus polygenea. It was shown that completely identical fractal patterns do not occur even within a single animal body with radial or bilateral symmetric, functionally equivalent repetitive modules. Fractal dimension was used to quantify the spatial complexity of neuron morphology in central nervous system of the fishes Pholidapus dybowskii, Oncorhyhchus keta and Oncorhyhchus masou. During ontogenesis of Oncorhyhchus masou the values of fractal dimension and linear morphometric indicators were rising in studied neuron groups. Probably biological morphogenesis with chaotic fractal regime had an advantage in evolution, providing morphofunctional variability, plasticity and adaptability to unpredictable environmental changes.

Key words

fractals, chaos, topology, Metazoa

Published July 25, 2009

References

Арнольд В.И. 2000. Теория катастроф. Издательство «Наука», Москва, 128 с.

Гапонов-Грехов А.В. и Рабинович М.И. 1997. Проблемы современной нелинейной динамики. Вестник Российской академии наук, 67: 608–614.

Голдбергер Э.Л., Ригни Д.Р. и Уэст Б.Дж. 1990. Хаос и фракталы в физиологии человека. В мире науки, 4: 25–32.

Державин Д.К. и Исаева В.В. 2000. Фрактальная самоорганизация агрегирующих in vitro гемоцитов моллюска Mizuhopecten yessoensis. Доклады Российской академии наук, 373: 254–256.

Захаров В.М. 1987. Асимметрия животных (популяционно-феногенетический подход). Издательство «Наука», Москва, 216 с.

Иванова-Казас О.М. 1979. Сравнительная эмбриология беспозвоночных животных. Членистоногие. Издательство «Наука», Москва, 224 с.

Исаева В.В. 1994. Клетки в морфогенезе. Издательство «Наука», Москва, 224 с.

Исаева В.В. 2005. Синергетика для биологов. Вводный курс. Издательство «Наука», Москва, 158 с.

Исаева В.В., Каретин Ю.А., Чернышев А.В. и Шкуратов Д.Ю. 2004а. Фракталы и хаос в биологическом морфогенезе. Издательство «Дальнаука», Владивосток, 162 с.

Исаева В.В., Пущина Е.В. и Каретин Ю.А. 2004б. Квазифрактальная организация нейронов головного мозга рыб. Биология моря, 30: 143–151.

Исаева В.В., Пущина Е.В. и Каретин Ю.А. 2006. Изменение морфометрических показателей и фрактальной размерности нейронов спинного мозга в онтогенезе симы Oncorhynchus masou. Биология моря, 32: 125–133.

Исаева В.В. и Преснов Е.В. 1990. Топологическое строение морфогенетических полей. Издательство «Наука», Москва, 256 с.

Исаева В.В., Рыбаков А.В. и Касьянов В.Л. 1999. Выявление in vitro колониальной организации интерны корнеголовых ракообразных. Доклады Российской академии наук, 366: 840–842.

Исаева В.В., Чернышев А.В. и Шкуратов Д.Ю. 2001а. Фракталы и хаос в морфологии организма. Вестник Дальневосточного отделения Российской академии наук, 2: 71–79.

Исаева В.В., Чернышев А.В. и Шкуратов Д.Ю. 2001б. Квазифрактальная организация гастроваскулярной системы медузы Aurelia aurita: порядок и хаос. Доклады Российской академии наук, 377: 553–555.

Исаева В.В., Шукалюк А.И. и Ахмадиева А.В. 2008. Бесполое размножение и репродуктивная стратегия колониальных представителей корнеголовых ракообразных (Cirripedia: Rhizocephala). Зоологический журнал, 87: 268–279.

Лахно В.Д. и Устинин М.Н. (ред.). 2002. Компьютеры и суперкомпьютеры в биологии. Издательство «Институт компьютерных исследований», Москва, Ижевск, 527 с.

Мандельброт Б. 2002. Фрактальная геометрия природы. Издательство «Институт компьютерных исследований», Москва, 856 с.

Мандельброт Б. 2004. Фракталы, случай и финансы. Издательство «Регулярная и хаотическая динамика», Москва, Ижевск, 255 с.

Преснов Е.В. и Исаева В.В. 1985. Перестройки топологии при морфогенезе. Издательство «Наука», Москва, 192 с.

Пригожин И. и Стенгерс И. 1986. Порядок из хаоса. М.: Издательство «Прогресс», Москва, 431 с.

Савельев С.В. 2001. Сравнительная анатомия нервной системы позвоночных. Издательство «ГЭОТАР-МЕД», 272 с.

Савельев С.В. 2005. Происхождение мозга. Издательство «ВЕДИ», Москва, 368 с.

Сандер Л.М. 1987. Фрактальный рост. В мире науки, 3: 62–69.

Свердлов Е.Д. 2003. ДНК в клетке: от молекулярной иконы к проблеме «что есть жизнь?» Вестник Российской академии наук, 73: 497–505.

Федер И. 1991. Фракталы. Издательство «Мир», Москва, 262 с.

Фейгенбаум М. 1983. Универсальность в поведении нелинейных систем. Успехи физических наук, 141: 343–374.

Хакен Г. 1980. Синергетика. Издательство «Мир», Москва, 404 с.

Хакен Г. 2003. Тайны природы. Синергетика: наука о взаимодействии. Издательство «Регулярная и хаотическая динамика», Москва, Ижевск, 320 с.

Чернышев А.В. и Исаева В.В. 2002. Формирование хаотических паттернов гастроваскулярной системы в онтогенезе медузы Aurelia aurita. Биология моря, 28: 382–386.

Чернышев А.В., Исаева В.В. и Преснов Е.В. 2001. Сравнительный анализ топологической организации Metazoa. Журнал общей биологии, 62: 49–56.

Aizeman E.A., Huang E.J. and Linden D.J. 2003. Morphological correlates of intrinsic electrical excitability in neurons of the deep cerebellar nuclei. Journal of Neurophysiology, 89: 1738–1747. https://doi.org/10.1152/jn.01043.2002

Blazis D.E.J. 2002. Introduction. The limits to self-organization in biological systems. Biological Bulletin, 202: 245–246. https://doi.org/10.1086/BBLv202n3p245

Ben-Jacob E. 1998. Bacterial wisdom. Physica A. 249: 553–577. https://doi.org/10.1016/S0378-4371(97)00515-3

Binzegger T., Douglas R.J. and Martin K.A.C. 2005. Axons in cat visual cortex are topologically self-similar. Cerebral Cortex, 15: 152–165. https://doi.org/10.1093/cercor/bhh118

Camazine S., Deneubourg J.L., Franks N.R., Sneyd J., Theraulaz G. and Bonabeau E. 2001. Self-organization in Biological Systems. Princeton University Press, Princeton.

Caserta F., Stanley H.E. and Eldred W.D. 1990. Physical mechanisms underlying neurite outgrowth; a quantitative analysis of neuronal shape. Physical Review Letters, 64: 95–98. https://doi.org/10.1103/PhysRevLett.64.95

Claverie J.-M. 2001. What if there are only 30,000 human genes? Science, 291: 1255–1257. https://doi.org/10.1126/science.1058969

Costa L.C., Manoel E.T.M., Faucereau F., Chelly J., van Pelt J. and Ramakers G. 2002. A shape analysis framework for neuromorphometry. Network: Computers and Neural System, 13: 283–310. https://doi.org/10.1088/0954-898X_13_3_303

Crick F.H.C. Linking numbers and nucleosomes. 1976. Proceedings of National Academy of Sciences USA, 75: 2639–2643. https://doi.org/10.1073/pnas.73.8.2639

Dallon J., Jang W. and Gomer R.H. 2006. Mathematically modelling the effects of counting factor in Dictyostelium discoideum. Mathematical and Medical Biology, 23: 45–62. https://doi.org/10.1093/imammb/dqi016

Damiani G. 1994. Evolutionary meaning, functions and morphogenesis of branching structures in biology. P. 104–115. In: Nonnenmacher T.F., Losa G.A. and Weibel E.R. (Eds.). Fractals in Biology and Medicine. Birkhäuser Verlag, Basel. https://doi.org/10.1007/978-3-0348-8501-0_8

Dawson M.N. and Jacobs D.K. 2001. Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biological Bulletin, 200: 92–96. https://doi.org/10.2307/1543089

Delage Y. 1884. Evolution de la Sacculine (Sacculina carcini Thomps.), Crustacé endoparasitaire de l’ordre nouveau des Kentrogonides. Archiv de Zoologie Expérimental et Générale, sér. 2, 2: 417–736.

Dickson B.J. 2002. Molecular mechanisms of axon guidance. Science, 298: 1959–1964. https://doi.org/10.1126/science.1072165

Drabik C.E., Nicita C.A. and Lutter L.C. 1997. Measurement of the linking number change in transcribing chromatin. Journal of Molecular Biology, 267: 794–806. https://doi.org/10.1006/jmbi.1997.0917

Edelman G.M. 1988. Topobiology. An Introduction to Molecular Embryology. Basic Books, New York.

Feigenbaum M. 1978. Quantitative universality for a class of nonlinear transformations. Journal of Statistic Physics, 19: 25–52. https://doi.org/10.1007/BF01020332

Fernandez E., Bolea J.A., Ortega G. and Louis E. 1999. Are neurons multifractals? Journal of Neuroscience Methods, 89: 151–157. https://doi.org/10.1016/S0165-0270(99)00066-7

Goldberger A.L. 1997. Fractal variability versus pathological periodicity: complexity and stereotypy in disease. Perspectives in Biology and Medicine, 40: 543–561. https://doi.org/10.1353/pbm.1997.0063

Goldberger A.L., Rigney D.R. and West B.J. 1990. Chaos and fractals in human physiology. Scientific American, 162: 43–49. https://doi.org/10.1038/scientificamerican0290-42

Guidice G. 1962. Restitution of whole larvae from disaggregated cells of sea urchin embryo. Developmental Biology, 5: 402–411. https://doi.org/10.1016/0012-1606(62)90021-0

Isaeva V.V., Presnov E.V. and Chernyshev A.V. 2006. Topological patterns in metazoan evolution and development. Bulletin of Mathematical Biology, 68: 2053–2067. https://doi.org/10.1007/s11538-006-9063-2

Hinegardner R.T. 1975. Morphology and genetics of sea urchin development. American Zoologist, 15: 679–689. https://doi.org/10.1093/icb/15.3.679

Hofman M.A. 1991. The fractal geometry of convoluted brain. Journal des Hirnforschungen, 32: 103–111.

Isaeva V.V., Kasyanov N.V. and Presnov E.V. 2008. Analysis situs of spatial-temporal architecture in biological morhogenesis. P. 141–189. In: Kelly J.T. (ed.). Progress in Mathematical Biology. Nova Science Publishers.

Isaeva V.V., Presnov E.V. and Chernyshev A.V. 2006. Topological patterns in metazoan evolution and development. Bulletin of Mathematical Biology, 68: 2053–2067. https://doi.org/10.1007/s11538-006-9063-2

Isaeva V.V., Shukalyuk A.I., Trofimova A.V., Korn O.M. and Rybakov A.V. 2001. The structure of colonial interna in Sacculina polygenea (Crustacea: Cirripedia: Rhizocephala). Crustacean Research, 30: 134–147. https://doi.org/10.18353/crustacea.30.0_133

Isaeva V.V., Shukalyuk A.I., Korn O.M. and Rybakov A.V. 2004. Development of primordial externae in the colonial interna of Polascus polygenea (Crustacea: Cirripedia: Rhizocephala). Crustacean Researh, 33: 61–71. https://doi.org/10.18353/crustacea.33.0_61

Jockush H. and Dress A. 2003. From sphere to torus: a topological view of the metazoan body plan. Bulletin of Mathematical Biology, 65: 57–65. https://doi.org/10.1006/bulm.2002.0319

Kauffman S.A. 1993. The Origins of Order. Self-Organization and Selection in Evolution. Oxford University Press, New York, Oxford, 709 p. https://doi.org/10.1007/978-94-015-8054-0_8

Kniffki K.-D., Pawlak M. and Vahle-Hinz C. 1994. Fractal dimensions and dendritic branching of neurons in the somatosensory thalamus. P. 221–229. In: Nonnenmacher T.F., Losa G.A. and Weibel E.R. (eds.). Fractals in Biology and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8501-0_19

Kramp P.L. 1942. Medusae: The Godhaab expedition, 1928. Meddelelser on Grønland, 81: 1–168.

Louis E., Degli Esposti Boschi C., Ortega G.J. and Fernandez E. 2007. Role of transport performance for neuron cell morphology. Journal of the Federation of American Societies for Experimental Biology, 21: 866–971. https://doi.org/10.1096/fj.06-5977com

Maletic-Savatic M., Malinow R. and Svoboda K. 1999. Rapid dendritic morhogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science, 283: 1923–1926. https://doi.org/10.1126/science.283.5409.1923

Mandelbrot B.B. 1977. Form, Chance and Dimension. Freeman, San Francisco, 365 p.

Mandelbrot B.B. 1983. The Fractal Geometry of Nature. Freeman, New York, 468 p.

Maresin V.M. and Presnov E.V. 1985. Topological approach to embryogenesis. Journal of Theoretical Biology, 114: 387–398. https://doi.org/10.1016/S0022-5193(85)80174-0

May R.M. 1975. Biological populations obeying difference equations; stable points, stable cycles and chaos. Journal of Theoretical Biology, 51: 511–524. https://doi.org/10.1016/0022-5193(75)90078-8

Meakin P. 1986. A new model for biological pattern formation. Journal of Theoretical Biology, 118: 101–113. https://doi.org/10.1016/S0022-5193(86)80011-X

Metzger R.J. and Krasnow M.A. 1999. Genetic control of branching morphogenesis. Science, 284: 1635–1639. https://doi.org/10.1126/science.284.5420.1635

Naeim F., Moatamed F. and Sahimi M. 1996. Morphogenesis of the bone marrow: fractal structures and diffusion-limited growth. Blood, 87: 5027–5031. https://doi.org/10.1182/blood.V87.12.5027.bloodjournal87125027

Parrish J.K. and Edelstein-Keshet L. 1999. Complexity, pattern, and evolutionary trade-off in animal aggregation. Science, 284: 99–101. https://doi.org/10.1126/science.284.5411.99

Parrish J.K., Viscido S.V. and Grünbaum D. 2002. Self-organized fish schools: an examination of emergent properties. Biological Bulletin, 202: 296–305. https://doi.org/10.2307/1543482

Pivar S. 2007. An Inconvenient Theory. The origin of Living Structure by Self-Organization. Dalton Press, New York.

Presnov E. and Isaeva V. 1996. Topological classification: onto- and phylogenesis. Memorie della Societa Italiana di Scienze Naturali e de Museo Civico di Storia Naturale di Milano, 27: 89–94.

Presnov E.V., Malyghin S.N. and Isaeva V.V. 1988. Topological and thermodynamic structures of morphogenesis. P. 337–370. In: Lamprecht I. and Zotin A.I. (eds.). Thermodynamics and Pattern Formation in Biology. Walter de Gruyter, Berlin, New York. https://doi.org/10.1515/9783110848403-018

Rakic P., Bourgeous J.-P. and Eckenhoff M.F. 1986. Concurrent overproduction of synapse in diverse regions of the primate cerebral cortex. Science, 232: 232–235. https://doi.org/10.1126/science.3952506

Rubiliani C., Turquier Y. and Payen G.G. 1982. Recherche sur l’ontogenèse des rhizocephales. I. Les stades précoces de la phase endoparasitaire chez Sacculina carcini Thompson. Cahiers de Biologique Marine, 23: 287–297.

Schiff S.J., Jerger K. and Duong D.H. 1994. Controlling chaos in the brain. Nature, 370: 615–620. https://doi.org/10.1038/370615a0

Shukalyuk A., Isaeva V., Kizilova E. and Baiborodin S. 2005. Stem cells in reproductive strategy of colonial rhizocephalan crustaceans (Crustacea: Cirripedia: Rhizocephala). Invertebrate Reproduction and Development, 48: 41–53. https://doi.org/10.1080/07924259.2005.9652169

Shukalyuk A., Golovnina K., Baiborodin S., Gunbin K., Blinov A. and Isaeva V. 2007. Vasa-related genes and their expression in stem cells of colonial parasitic rhizocephalan barnacle Polyascus polygenea (Arthropoda: Crustacea: Cirripedia: Rhizocephala). Cell Biology International, 31: 97–108. https://doi.org/10.1016/j.cellbi.2006.09.012

Smith T.G., Lange G.D. and Marks W.B. 1996. Fractal methods and results in cellular biology – dimensions, lacunarity and multifractals. Journal of Neuroscince Methods, 69: 123–136. https://doi.org/10.1016/S0165-0270(96)00080-5

Southward A.J. 1955. Observations on the ciliary currents of the jelly-fish Aurelia aurita. Journal of Marine Biological Association of United Kingdom, 34: 201–216. https://doi.org/10.1017/S0025315400027570

Spiegel M. and Spiegel E. 1975. The reaggregation of dissociated embryonic sea urchin cells. American Zoologist, 15: 583–606. https://doi.org/10.1093/icb/15.3.583

Stanley H.E. 1989. Learning concepts of fractals and probability by “doing science”. Physica D, 38: 330–340. https://doi.org/10.1016/0167-2789(89)90215-7

Sulston J.E., Schierenberg E., White J.G. and Thomson J.N. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology, 100: 64–119. https://doi.org/10.1016/0012-1606(83)90201-4

Stasiak A. 2000. DNA topology: feeling the pulse of a topoisomerase. Current Biology, 10: R526–R528. https://doi.org/10.1016/S0960-9822(00)00585-6

Thom R. 1969. Topological models in biology. Topology, 8: 313–335. https://doi.org/10.1016/0040-9383(69)90018-4

Thom R. 1996. Qualitative and quantitative in evolutionary theory with some thoughts on Aristotelian biology. Memorie della Societa Italiana di Scienze Naturali e de Museo Civico di Storia Naturale di Milano, 27: 115–117.

Thomas R.D.K. and Reif W.E. 1993. The skeleton space: A finite set of organic design. Evolution, 47: 341–359. https://doi.org/10.2307/2410056

Tononi G. and Edelman G.M. 1998. Consciousness and complexity. Science, 282: 1846–1850. https://doi.org/10.1126/science.282.5395.1846

Thorne B.C., Bailey A.M. and Peirce S.M. 2007. Combining experiments with multi-cell agent-based modeling to study biological tissue patterning. Brief Bioinformation, 8: 245–257. https://doi.org/10.1093/bib/bbm024

Valentine J.W. and Collins A.G. 2000. The significance of moulting in Ecdysozoan evolution. Evolution and Development, 2: 152–156. https://doi.org/10.1046/j.1525-142x.2000.00043.x

Waddington C.H. 1940. Organisers and Genes. University Press, Cambridge, 162 p.

Waliszewski P. and Konarski J. 2002. Neuronal differentiation and synapse formation occur in space and time with fractal dimension. Synapse, 43: 252–258. https://doi.org/10.1002/syn.10042

Warburton D., Schwarz M., Tefft D., Flores-Delgado G., Anderson K.D. and Cardoso W.V. 2000. The molecular basis of lung morphogenesis. Mechanisms of Development, 92: 55–81. https://doi.org/10.1016/S0925-4773(99)00325-1

Wasserman S.A. and Cozzarelli N.R. 1986. Biochemical topology: applications to DNA recombination and replication. Science, 232: 951–960. https://doi.org/10.1126/science.3010458

Weibel E.R. 1991. Fractal geometry – a design principle for living organisms. American Journal of Physiology, 261: 361–369. https://doi.org/10.1152/ajplung.1991.261.6.L361

Weibel E.R. 1994. Design of biological organisms and fractal geometry. P. 68–85. In: Nonnenmacher T.F., Losa G.A. and Weibel E.R. (eds.). Fractals in Biology and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8501-0_6

West G.B., Brown J.H. and Enquist B.J. 1999. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science, 284: 1677–1679. https://doi.org/10.1126/science.284.5420.1677

White J.G., Southgate E., Thomson J.N. and Brenner S. 1985. The structure of the nervous system of the nematode C. Elegans. Philosophical Transactions of the Royal Society of London, 314: 1–340. https://doi.org/10.1098/rstb.1986.0056

Whitesides G.M. and Grzybowski B. 2002. Self-assembly at all scales. Science, 295: 2418–2421. https://doi.org/10.1126/science.1070821

Wilson H.W. 1907. On some phenomena of coalescence and regeneration in sponges. Journal of Experimental Zoology, 5: 250–252. https://doi.org/10.1002/jez.1400050204

Witten T.A. and Sander L.M. 1981. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Reviews Letters, 47: 1400–1403. https://doi.org/10.1103/PhysRevLett.47.1400

 

© Zoological Institute of the Russian Academy of Sciences
Last modified: March 25, 2025