Diet shift in giant Madagascan dung beetle Helictopleurus giganteus (Coleoptera: Scarabaeidae: Scarabaeinae) studied by amplicon metagenomics

A.V. Frolov, M.S. Vishnevskaya and L.A. Akhmetova

Proceedings of the Zoological Institute RAS, 2023, 327(4): 719–723   ·   https://doi.org/10.31610/trudyzin/2023.327.4.719

Full text  

Abstract

Dung beetles are important elements in the food webs in Madagascar, where they evolved as consumers of lemur excrements. The anthropogenic pressure reduces lemur populations, which causes dung beetles to shift to other food sources. To assess the diet of giant Madagascan dung beetle Helictopleurus giganteus (Harold), we studied hindgut content of seven specimens from different localities with amplicon metagenomic methods. We found reads of five mammal species, with over 99% of total reads belonging to human and cow. No native Madagascan mammals were detected in the samples. The results suggest the human mediated diet shift in H. giganteus, although they should be interpreted with caution, because unavoidable contaminations may contribute reasonably to the high yield of the cow and human reads.

Key words

amplicon metagenomics, analysis, coprophagy, Dung beetles, gut content, Madagascar, next-generation sequencing, scarabaeines

Submitted November 9, 2023  ·  Accepted December 2, 2023  ·  Published December 25, 2023

References

Akhmetova L.A., Montreuil O. and Frolov A.V. 2023. Diversity of the Endemic Madagascan Dung Beetles (Coleoptera, Scarabaeidae, Scarabaeinae): New Records from Six Protected Areas. Diversity, 15(10): 1066. https://doi.org/10.3390/d15101066

Brown G.R. and Matthews I.M. 2016. A review of extensive variation in the design of pitfall traps and a proposal for a standard pitfall trap design for monitoring ground‐active arthropod biodiversity. Ecology and evolution, 6(12): 3953–3964. https://doi.org/10.1002/ece3.2176

Drinkwater R., Williamson J., Clare E.L., Chung A.Y., Rossiter S.J. and Slade E. 2021. Dung beetles as samplers of mammals in Malaysian Borneo – a test of high throughput metabarcoding of iDNA. PeerJ, 9: e11897. https://doi.org/10.7717/peerj.11897

Edgar R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature methods, 10(10): 996–998. https://doi.org/10.1038/nmeth.2604

Edgar R.C. and Flyvbjerg H. 2015. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics, 31(21): 3476–3482. https://doi.org/10.1093/bioinformatics/btv401

Frolov A.V., Akhmetova L.A., Vishnevskaya M.S., Kiriukhin B.A., Montreuil O., Lopes F. and Tarasov S.I. 2023. Amplicon metagenomics of dung beetles (Coleoptera, Scarabaeidae, Scarabaeinae) as a proxy for lemur (Primates, Lemuroidea) studies in Madagascar. ZooKeys, 1181: 29–39. https://doi.org/10.3897/zookeys.1181.107496

Hanski I., Wirta H., Nyman T. and Rahagalala P. 2008. Resource shifts in Malagasy dung beetles: contrasting processes revealed by dissimilar spatial genetic patterns. Ecology Letters, 11(11): 1208–1215. https://doi.org/10.1111/j.1461-0248.2008.01239.x

Ji Y., Baker C.C.M., Popescu V.D., Wang J., Wu C., Wang Z., Li Y., Wang L., Hua C., Yang Z., Yang C., Xu C.C.Y., Diana A., Wen Q., Pierce N.E. and Yu D.W. 2022. Measuring protected-area effectiveness using vertebrate distributions from leech iDNA. Nature Communications, 13(1): 1555. https://doi.org/10.1038/s41467-022-28778-8

Kerley G.I.H., Landman M., Ficetola G.F., Boyer F., Bonin A., Rioux D., Taberlet P. and Coissac E. 2018. Diet shifts by adult flightless dung beetles Circellium bacchus, revealed using DNA metabarcoding, reflect complex life histories. Oecologia, 188(1): 107–115. https://doi.org/10.1007/s00442-018-4203-6

Orsini L., Koivulehto H. and Hanski I. 2007. Molecular evolution and radiation of dung beetles in Madagascar. Cladistics, 23(2): 145–168. https://doi.org/10.1111/j.1096-0031.2006.00139.x

Rahagalala P., Viljanen H., Hottola J. and Hanski I. 2009. Assemblages of dung beetles using cattle dung in Madagascar. African Entomology, 17(1): 71–89. https://doi.org/10.4001/003.017.0109

Taylor P.G. 1996. Reproducibility of ancient DNA sequences from extinct Pleistocene fauna. Molecular biology and evolution, 13(1): 283–285. https://doi.org/10.1093/oxfordjournals.molbev.a025566

Viljanen H., Wirta H., Montreuil O., Rahagalala P., Johnson S. and Hanski I. 2010. Structure of local communities of endemic dung beetles in Madagascar. Journal of Tropical Ecology, 26: 481–496. https://doi.org/10.1017/S0266467410000325

Wirta H. and Montreuil O. 2008. Evolution of the Canthonini Longitarsi (Scarabaeidae) in Madagascar. Zoologica Scripta, 37: 651–663. https://doi.org/10.1111/j.1463-6409.2008.00352.x

Wirta H., Orsini L. and Hanski I. 2008. An old adaptive radiation of forest dung beetles in Madagascar. Molecular phylogenetics and evolution, 47(3): 1076–1089. https://doi.org/10.1016/j.ympev.2008.03.010

Wirta H., Viljanen H., Orsini L., Montreuil O. and Hanski I. 2010. Three parallel radiations of Canthonini dung beetles in Madagascar. Molecular phylogenetics and evolution, 57(2): 710–727. https://doi.org/10.1016/j.ympev.2010.08.013

Wirta H.K., Hebert P.D.N., Kaartinen R., Prosser S.W., Várkonyi G. and Roslin T. 2014. Complementary molecular information changes our perception of food web structure. Proceedings of the National Academy of Sciences, 111(5): 1885–1890. https://doi.org/10.1073/pnas.1316990111

 

© Zoological Institute of the Russian Academy of Sciences
Last modified: June 3, 2025