Bird migration research today: some achievements and new challengesProceedings of the Zoological Institute RAS, 2023, 327(4): 607–622 · https://doi.org/10.31610/trudyzin/2023.327.4.607 Abstract This review deals with the topics of bird migration research that have seen significant progress in the recent years. In these fields, earlier views have been significantly re-considered. They include the manifestation of migration, i.e. length of migratory flights, their speed, duration of stopovers, flight altitude, which taken together form the spatio-temporal realization of migration. New data on this array of research questions make it possible to ask new questions about physiological adaptations that make such flights possible, and factors that govern these processes. Significant progress is also evident in the study of long-distance orientation and navigation of migrating birds. However, it mainly concerns the mechanisms of magnetoreception and use of magnetic cues for orientation. Besides, students of bird migration could not ignore the ‘-omics’ revolution, which, like the studies of the manifestation of migration, was mainly caused by technological advances, mainly by the advent of next generation sequencing techniques. The new data obtained by these methods raised the hope to sort out the genetic basis of endogenous control of bird migration. However, the gap between the expectations and the actual results remains. To close this gap, new research into the molecular and cellular mechanisms that underlie migratory behavior is necessary. The results available now mainly refer to the processes that are relatively well understood, mainly the mechanisms of energy turnover and stress response. Key words genetics of behavior, migration, orientation, birds, telemetry Submitted May 4, 2023 · Accepted September 12, 2023 · Published December 25, 2023 References Astakhova L.A., Rotov A.Yu. and Chernetsov N.S. 2023. The relationship between the magnetic compass and vision in birds: in search of receptor cells. Neuroscience and Behavioral Physiology, 53(6): 1014–1024. https://doi.org/10.1007/s11055-023-01495-5 Astakhova L.A., Rotov A.Yu., Kavokin K.V., Chernetsov N.S. and Firsov M.L. 2020. Relationship between avian magnetic compass and photoreception: hypotheses and unresolved questions. Biology Bulletin Reviews, 10(1): 1–10. https://doi.org/10.1134/S2079086420010028 Bartell P.A. and Gwinner E. 2005. A separate circadian oscillator controls nocturnal migratory restlessness in the songbird Sylvia borin. Journal of Biological Rhythms, 20(6): 538–549. https://doi.org/10.1177/0748730405281826 Bäckman J., Andersson A., Alerstam T., Pedersen L., Sjöberg S., Thorup K. and Tøttrup A. 2017a. Activity and migratory flights of individual free-flying songbirds throughout the annual cycle: method and first case study. Journal of Avian Biology, 48: 309–319. https://doi.org/10.1111/jav.01068 Bäckman J., Andersson A., Pedersen L., Sjöberg S., Tøttrup A. and Alerstam T. 2017b. Actogram analysis of free-flying migratory birds: new perspectives based on acceleration logging. Journal of Comparative Physiology A, 203: 543–564. https://doi.org/10.1007/s00359-017-1165-9 Bazzi G., Ambrosini R., Caprioli M., Costanzo A., Liechti F., Gatti E., Gianfranceschi L., Podofillini S., Romano A., Romano M., Scandolara C., Saino N. and Rubolini D. 2015. Clock gene polymorphism and scheduling of migration: a geolocator study of the barn swallow Hirundo rustica. Scientific Reports, 5: 12443. https://doi.org/10.1038/srep12443 Bazzi G., Galimberti A., Hays Q.R., Bruni I., Cecere J.G., Gianfranceschi L., Hobson K.A., Morbey Y.E., Saino N., Guglielmo C.G. and Rubolini D. 2016. Adcyap1 polymorphism covaries with breeding latitude in a Nearctic migratory songbird, the Wilson's warbler (Cardellina pusilla). Ecology and Evolution, 6(10): 3226–3239. https://doi.org/10.1002/ece3.2053 Bearhop S., Fiedler W., Furness R.W., Votier S.C., Waldron S., Newton J., Bowen G.J., Berthold P. and Farnsworth K. 2005. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science, 310(5747): 502–504. https://doi.org/10.1126/science.1115661 Berthold P. 1973. Relationships between migratory restlessness and migration distance in six Sylvia species. Ibis, 115(4): 594–599. https://doi.org/10.1111/j.1474-919X.1973.tb01998.x Berthold P. 1975. Migration: control and metabolic physiology. In: D.S. Farner and J.R. King (Eds). Avian Biology. Vol. 5. Academic Press, N.Y.: 77–128. https://doi.org/10.1016/B978-0-12-249405-5.50010-0 Berthold P. 1996. Control of bird migration. Chapman and Hall, London, 355 p. Berthold P. and Querner U. 1981. Genetic basis of migratory behavior in European warblers. Science, 212(4490): 77–79. https://doi.org/10.1126/science.212.4490.77 Bishop C.M., Spivey R.J., Hawkes L.A, Batbayar N., Chua B., Frappell P.B., Milsom W.K., Natsagdorj T., Newman S.H., Scott G.R., Takekawa J.Y., Wikelski M. and Butler P.J. 2015. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science, 347(6219): 250–254. https://doi.org/10.1126/science.1258732 Bolte P., Bleibaum F., Einwich A., Günther A., Liedvogel M., Heyers D., Depping A., Wöhlbrand L., Rabus R., Janssen-Bienhold U. and Mouritsen H. 2016. Localisation of the putative magnetoreceptive protein cryptochrome 1b in the retinae of migratory birds and homing pigeons. PLOS ONE, 11: e0147819. https://doi.org/10.1371/journal.pone.0147819 Bruderer B., Peter D. and Korner-Nievergelt F. 2018. Vertical distribution of bird migration between the Baltic Sea and the Sahara. Journal of Ornithology, 159: 315–336. https://doi.org/10.1007/s10336-017-1506-z Chernetsov N. 2010. Recent experimental data on the energy costs of avian flight call for a revision of optimal migration theory. Auk, 127(1): 232–234. https://doi.org/10.1525/auk.2009.09012 Chernetsov N. 2012a. Optimal migration theory: response to Hedenström (2012). Auk, 129(2): 354–355. https://doi.org/10.1525/auk.2012.129.2.354 Chernetsov N. 2012b. Passerine migration: stopovers and flight. Springer, Berlin Heidelberg, 184 p. https://doi.org/10.1007/978-3-642-29020-6 Chernetsov N.S. 2016. Orientation and navigation of migrating birds. Biology Bulletin, 43(8): 788–803. https://doi.org/10.1134/S1062359016080069 Chernetsov N., Berthold P. and Querner U. 2004. Migratory orientation of first-year white storks (Ciconia ciconia): inherited information and social interactions. Journal of Experimental Biology, 207(6): 937–943. https://doi.org/10.1242/jeb.00853 Chernetsov N., Kishkinev D. and Mouritsen H. 2008. A long-distance avian migrant compensates for longitudinal displacement during spring migration. Current Biology, 18(3): 188–190. https://doi.org/10.1016/j.cub.2008.01.018 Contina A., Bridge E.S., Ross J.D., Shipley J.R. and Kelly J.F. 2018. Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine. PLOS ONE, 13(1): e0190859. https://doi.org/10.1371/journal.pone.0190859 Delmore K., Illera J.C., Pérez-Tris J., Segelbacher G., Lugo Ramos J.S., Durieux G., Ishigohoka J. and Liedvogel M. 2020. The evolutionary history and genomics of European blackcap migration. eLife, 9: e54462. https://doi.org/10.7554/eLife.54462 Delmore K.E. and Irwin D.E. 2014. Hybrid songbirds employ intermediate routes in a migratory divide. Ecology Letters, 17: 1211–1218. https://doi.org/10.1111/ele.12326 Delmore K.E., Toews D.P.L., Germain R.R., Owens G.L. and Irwin D.E. 2016. The genetics of seasonal migration and plumage color. Current Biology, 26: 2167–2173. https://doi.org/10.1016/j.cub.2016.06.015 Dolnik V.R. 1975. Migratory disposition of birds. Nauka, Moscow, 399 p. [In Russian]. Dolnik V.R. 1995. Energy and time resources in free-living birds. Nauka, Saint Petersburg, 360 p. [In Russian]. Doyle T., Jimenez-Guri E., Hawkes W.L.S., Massy R., Mantica F., Permanyer J., Cozzuto L., Hermoso Pulido T., Baril T., Hayward A., Irimia M., Chapman J.W., Bass C. and Wotton K.R. 2022. Genome-wide transcriptomic changes reveal the genetic pathways involved in insect migration. Molecular Ecology, 31(16): 4332–4350. https://doi.org/10.1111/mec.16588 Dufour P., Åkesson S., Hellström M., Hewson C., Lagerveld S., Mitchell L., Chernetsov N., Schmaljohann H. and Crochet P.-A. 2022. The Yellow-browed Warbler (Phylloscopus inornatus) as a model to understand vagrancy and its potential for the evolution of new migratory routes. Movement Ecology, 10: 59. https://doi.org/10.1186/s40462-022-00345-2 Dufour P., Franceschi C.D., Doniol-Valcroze P., Jiguet F., Guéguen M., Renaud J., Lavergne S. and Crochet P.-A. 2021. A new westward migration route in an Asian passerine bird. Current Biology, 24(31): 5590–5596. https://doi.org/10.1016/j.cub.2021.09.086 Elbers D., Bulte M., Bairlein F., Mouritsen H. and Heyers D. 2017. Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe). Journal of Comparative Physiology A, 203: 591–600. https://doi.org/10.1007/s00359-017-1167-7 Falkenberg G., Fleissner G., Schuchardt K., Kuehbacher M., Thalau P., Mouritsen H., Heyers D., Wellenreuther G. and Fleissner G. 2010. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLOS ONE, 5: e9231. https://doi.org/10.1371/journal.pone.0009231 Fleissner G., Holtkamp-Rötzler E., Hanzlik M., Winklhofer M., Fleissner G., Petersen N. and Wiltschko W. 2003. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. Journal of Comparative Neurology, 458(4): 350–360. https://doi.org/10.1002/cne.10579 Fleissner G., Stahl B., Thalau P., Falkenberg G. and Fleissner G. 2007. A novel concept of Fe-mineral-based magnetoreception: histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften, 94: 631–642. https://doi.org/10.1007/s00114-007-0236-0 Francini P., Irisarri I., Fudickar A., Schmidt A., Meyer A., Wikelski M. and Partecke J. 2017. Animal tracking meets migration genomics: transcriptomic analysis of a partially migratory bird species. Molecular Ecology, 26: 3204–3216. https://doi.org/10.1111/mec.14108 Freake M.J., Muheim R. and Phillips J.B. 2006. Magnetic maps in animals: a theory comes of age? Quarterly Review of Biology, 81(4): 327–347. https://doi.org/10.1086/511528 Frias-Soler R.C., Pildaín L.V., Pârâu L.G., Wink M. and Bairlein F. 2020. Transcriptome signatures in the brain of a migratory songbird. Comparative Biochemistry and Physiology D, 34: 100681. https://doi.org/10.1016/j.cbd.2020.100681 Fuchs T., Haney A., Jechura T.J., Moore F.R. and Bingman V.P. 2006. Daytime naps in night-migrating birds: behavioural adaptation to seasonal sleep deprivation in the Swainson’s thrush, Catharus ustulatus. Animal Behaviour, 72: 951–958. https://doi.org/10.1016/j.anbehav.2006.03.008 Fuchs T., Maury D., Moore F.R. and Bingman V.P. 2009. Daytime micro-naps in a nocturnal migrant: an EEG analysis. Biology Letters, 5(1): 77–80. https://doi.org/10.1098/rsbl.2008.0405 Gekakis N., Staknis D., Nguyen H.B., Davies F.C., Wilsbacher L.D., King D.P., Takahashi J.S. and Weitz C.J. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science, 280(5369): 1564–1569. https://doi.org/10.1126/science.280.5369.1564 Gill R.E., Jr., Tibbits T.L., Douglas D.C., Handel C.M., Mulcahy D.M., Gottschalck J.C., Warnock N., McCaffery B.J., Battley P.F. and Piersma T. 2009. Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier? Proceedings of the Royal Society B, 276(1656): 447–457. https://doi.org/10.1098/rspb.2008.1142 Günther A., Einwich A., Sjulstok E., Feederle R., Bolte P., Koch K.-W., Solov’yov I.A. and Mouritsen H. 2018. Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Current Biology, 28: 211–223. https://doi.org/10.1016/j.cub.2017.12.003 Gwinner E. 1996. Circadian and circannual programmes in avian migration. Journal of Experimental Biology, 199(1): 39–48. https://doi.org/10.1242/jeb.199.1.39 Gwinner E. and Wiltschko W. 1978. Endogenously controlled changes in migratory direction of the Garden Warbler, Sylvia borin. Journal of Comparative Physiology, 125: 267–273. https://doi.org/10.1007/BF00656605 Haase K., Musielak I., Warmuth-Moles L., Leberecht B., Zolotareva A., Mouritsen H. and Heyers D. 2022. In search for the avian trigeminal magnetic sensor: Distribution of peripheral and central terminals of ophthalmic sensory neurons in the night-migratory Eurasian blackcap (Sylvia atricapilla). Frontiers in Neuroanatomy, 16: 853401. https://doi.org/10.3389/fnana.2022.853401 Hawkes L.A., Balachandran S., Batbayar N., Butler P.J., Chua B., Douglas D.C., Frappell P.B., Hou Y., Milsom W.K., Newman S.H., Prosser D.J., Sathiyaselvam P., Scott G.R., Takekawa J.Y., Natsagdorj T., Wikelski M., Witt M.J., Yan B. and Bishop C.M. 2013. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proceedings of the Royal Society B, 280(1750): 20122114. https://doi.org/10.1098/rspb.2012.2114 Hawkes L.A., Balachandran S., Batbayar N., Butler P.J., Frappell P.B., Hou Y., Milsom W.K., Tseveenmyadag N., Newman S.H., Scott G.R., Sathiyaselvam P., Takekawa J.Y., Wikelski M. and Bishop C.M. 2011. The trans-Himalayan flights of bar-headed geese (Anser indicus). Proceedings of the National Academy of Sciences of the U.S.A., 108(23): 9516–9519. https://doi.org/10.1073/pnas.1017295108 Hedenström A. 2003. Twenty-three testable predictions about bird flight. In: P. Berthold, E. Gwinner and E. Sonnenschein (Eds). Avian Migration. Springer, Berlin: 563–582. https://doi.org/10.1007/978-3-662-05957-9_38 Hedenström A. 2008. Adaptations to migration in birds: behavioural strategies, morphology and scaling effects. Philosophical Transactions of the Royal Society B, 363: 287–299. https://doi.org/10.1098/rstb.2007.2140 Hedenström A. 2010. Extreme endurance migration: what is the limit to non-stop flight? PLOS Biology, 8: e1000362. https://doi.org/10.1371/journal.pbio.1000362 Hedenström A. 2012. Recent experimental data on the energy costs of avian flight do not call for a revision of optimal migration theory. Auk, 129(2): 352–354. https://doi.org/10.1525/auk.2012.129.2.352 Helbig A.J. 1991a. Inheritance of migratory direction in a bird species: a cross-breeding experiment with SE- and SW-migrating blackcaps (Sylvia atricapilla). Behavioral Ecology and Sociobiology, 28(1): 9–12. https://doi.org/10.1007/BF00172133 Helbig A.J. 1991b. SE- and SW-migrating Blackcap (Sylvia atricapilla) populations in Central Europe: Orientation of birds in the contact zone. Journal of Evolutionary Biology, 4(4): 657–670. https://doi.org/10.1046/j.1420-9101.1991.4040657.x Helbig A.J. 1996. Genetic basis, mode of inheritance and evolutionary changes of migratory directions in Palearctic warblers (Aves: Sylviidae). Journal of Experimental Biology, 199(1): 49–55. https://doi.org/10.1242/jeb.199.1.49 Heyers D., Zapka M., Hoffmeister M., Wild J.M. and Mouritsen H. 2010. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proceedings of National Academy of Sciences of the U.S.A., 107(20): 9394–9399. https://doi.org/10.1073/pnas.0907068107 Kishkinev D., Chernetsov N., Heyers D. and Mouritsen H. 2013. Migratory reed warblers need intact trigeminal nerves to correct for a 1,000 km eastward displacement. PLOS ONE, 8(6): e65847. https://doi.org/10.1371/journal.pone.0065847 Kishkinev D., Chernetsov N., Pakhomov A., Heyers D. and Mouritsen H. 2015. Eurasian reed warblers compensate for virtual magnetic displacement. Current Biology, 25(19): R822–R824. https://doi.org/10.1016/j.cub.2015.08.012 Kramer G. 1953. Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? Journal für Ornithologie, 94(3/4): 201–219. https://doi.org/10.1007/BF01922508 Kramer G. 1957. Experiments in bird orientation and their interpretation. Ibis, 99(2): 196–227. https://doi.org/10.1111/j.1474-919X.1957.tb01947.x Krist M., Munclinger P., Briedis M. and Adamík P. 2021. The genetic regulation of avian migration timing: combining candidate genes and quantitative genetic approaches in a long-distance migrant. Oecologia, 196: 373–387. https://doi.org/10.1007/s00442-021-04930-x Lefeldt N., Heyers D., Schneider N.-L., Engels S., Elbers D. and Mouritsen H. 2014. Magnetic field-driven induction of ZENK in the trigeminal system of pigeons (Columba livia). Journal of the Royal Society Interface, 11(100): 20140777. https://doi.org/10.1098/rsif.2014.0777 Liedvogel M. and Sheldon B.C. 2010. Low variability and absence of phenotypic correlates of Clock gene variation in a great tit Parus major population. Journal of Avian Biology, 41(5): 543–550. https://doi.org/10.1111/j.1600-048X.2010.05055.x Lindström Å., Alerstam T., Bahlenberg P., Ekblom R., Fox J.W., Råghall J. and Klaassen R.H.G. 2016. The migration of the great snipe Gallinago media: intriguing variations on a grand theme. Journal of Avian Biology, 47: 321–334. https://doi.org/10.1111/jav.00829 Loonstra A.H.J., Verhoeven M.A., Both C. and Piersma T. 2023. Translocation of shorebird siblings shows intraspecific variation in migration routines to arise after fledging. Current Biology, 33(12): 2535–2540. e3. https://doi.org/10.1016/j.cub.2023.05.014 Lundberg M., Liedvogel M., Larson K., Sigeman H., Grahn M., Wright A., Åkesson S. and Bensch S. 2017. Genetic differences between willow warbler migratory phenotypes are few and cluster in large haplotype blocks. Evolution Letters, 1(3): 155–168. https://doi.org/10.1002/evl3.15 McKinnon E.A. and Love O.P. 2018. Ten years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging. Auk, 135: 834–856. https://doi.org/10.1642/AUK-17-202.1 Mendgen P., Converse S.J., Pearse A.P., Teibelbaum C.A. and Mueller T. 2023. Differential shortstopping behaviour in Whooping Cranes: Habitat or social learning? Global Ecology and Conservation, 41: e02365. https://doi.org/10.1016/j.gecco.2022.e02365 Mouritsen H. 2018. Long-distance navigation and magnetoreception in migratory animals. Nature, 558: 50–59. https://doi.org/10.1038/s41586-018-0176-1 Mueller J.C., Pulido F. and Kempenaers B. 2011. Identification of a gene associated with avian migratory behaviour. Proceedings of the Royal Society B, 278(1719): 2848–2856. https://doi.org/10.1098/rspb.2010.2567 Mueller T., O’Hara R.B., Converse S.J., Urbanek R.P. and Fagan W.F. 2013. Social learning of migratory performance. Science, 341(6149): 999–1002. https://doi.org/10.1126/science.1237139 Muheim R., Bäckman J. and Åkesson S. 2002. Magnetic compass orientation in European robins is dependent on both wavelength and intensity of light. Journal of Experimental Biology, 205(24): 3845–3856. https://doi.org/10.1242/jeb.205.24.3845 Munro U., Munro J.A., Phillips J.B. and Wiltschko W. 1997. Effect of wavelength of light and pulse magnetisation on different magnetoreception systems in a migratory bird. Australian Journal of Zoology, 45(2): 189–198. https://doi.org/10.1071/ZO96066 Németh Z. 2009. Observation of daytime sleep-like behavior in a migratory songbird during stopover. Wilson Journal of Ornithology, 121(3): 644–646. https://doi.org/10.1676/08-146.1 Nießner C., Gross J.C., Denzau S., Peichl L., Fleissner G., Wiltschko W. and Wiltschko R. 2016. Seasonally changing cryptochrome 1b expression in the retinal ganglion cells of a migrating passerine bird. PLOS ONE, 11: e0150377. https://doi.org/10.1371/journal.pone.0150377 Pakhomov A., Anashina A., Heyers D., Kobylkov D., Mouritsen H. and Chernetsov N. 2018. Magnetic map navigation in a migratory songbird requires trigeminal input. Scientific Reports, 8: 11975. https://doi.org/10.1038/s41598-018-30477-8 Pennycuick C.J. 1978. Fifteen testable predictions about bird flight. Oikos, 30(2): 165–176. https://doi.org/10.2307/3543476 Rappl R., Wiltschko R., Weindler P., Berthold P. and Wiltschko W. 2000. Orientation behavior of Garden Warblers, Sylvia borin, under monochromatic light of various wavelengths. Auk, 117(1): 256–260. https://doi.org/10.1093/auk/117.1.256 Rattenborg N.C., Mandt B.H., Obermeyer W.H., Winsauer P.J., Huber R., Wikelski M. and Benca R.M. 2004. Migratory sleeplessness in the white-crowned sparrow (Zonotrichia leucophrys gambelii). PLOS Biology, 2(7): e212. https://doi.org/10.1371/journal.pbio.0020212 Rattenborg N.C., Martinez-Gonzalez D. and Lesku J.A. 2009. Avian sleep homeostasis: Convergent evolution of complex brains, cognition and sleep functions in mammals and birds. Neuroscience and Biobehavioral Reviews, 33(3): 253–270. https://doi.org/10.1016/j.neubiorev.2008.08.010 Rattenborg N., Voirin B., Cruz S., Tisdale R., Dell’Omo G., Lipp H.-P., Wikelski M. and Vyssotski A.L. 2016. Evidence that birds sleep in mid-flight. Nature Communications, 7: 12468. https://doi.org/10.1038/ncomms12468 Schüz E. 1949. Die Spät-Auflassung ostpreußischer Störche in West-Deutschland durch die Vogelwarte Rossitten 1933. Vogelwarte, 15: 63–78. Schüz E. 1950. Die Frühauflassung ostpreußischer Jungstörche in West-Deutschland durch die Vogelwarte Rossitten 1933–1936. Bonner zoologische Beiträge, 1(2–4): 239–253. Schüz E. 1971. Grundriß der Vogelzugskunde. 2., völlig neubearb. Auflage. Paul Parey, Berlin, 390 p. Schüz E. and Weigold H. 1931. Atlas des Vogelzugs nach der Beringungsergebnissen bei palaearktischen Vögeln. R. Friedländer and Sohn, 160 p. Sjöberg S., Malmiga G., Nord A., Andersson A., Bäckman J., Tarka M., Willemoes M., Thorup K., Hansson B., Alerstam T. and Hasselquist D. 2021. Extreme altitudes during diurnal flights in a nocturnal songbird migrant. Science, 372(6542): 646–648. https://doi.org/10.1126/science.abe7291 Sokolov L.V. 2011. Modern telemetry: New possibilities in ornithology. Biology Bulletin, 38(9): 885–904. https://doi.org/10.1134/S1062359011090081 Sokolovskis K., Lundberg M., Åkesson S., Willemoes M., Zhao T., Caballero-Lopez V. and Bensch S. 2023. Migration direction in a songbird explained by two loci. Nature Communications, 14: 165. https://doi.org/10.1038/s41467-023-35788-7 Spina F., Baillie S.R., Bairlein F., Fiedler W. and Thorup K. (Eds). 2022. The Eurasian African Bird Migration Atlas. EURING/CMS. https://migrationatlas.org Stapput K., Thalau P., Wiltschko R. and Wiltschko W. 2008. Orientation of birds in total darkness. Current Biology, 18(8): 602–606. https://doi.org/10.1016/j.cub.2008.03.046 Swan L.W. 1961. Ecology of the high Himalayas. Scientific American, 205: 68–78. https://doi.org/10.1038/scientificamerican1061-68 Thienemann J. 1931. Vom Vogelzuge in Rossitten. Neumann-Neudamm, Neudamm, 180 p. Toews D.P.L., Taylor S.A., Streby H.M., Kramer G.R. and Lovette I.J. 2019. Selection on VPS13A linked to migration in a songbird. Proceedings of the National Academy of Sciences of the U.S.A., 116(37): 18272–18274. https://doi.org/10.1073/pnas.1909186116 Treiber C.D., Salzer M., Breuss M., Ushakova L., Lauwers M., Edelman N. and Keays D.A. 2013. High resolution anatomical mapping confirms the absence of a magnetic sense system in the rostral upper beak of pigeons. Communicative and Integrative Biology, 6: e24859. https://doi.org/10.4161/cib.24859 Treiber C.D., Salzer M.C., Riegler J., Edelman N., Sugar C., Breuss M., Pichler P., Cadiou H., Saunders M., Lythgoe M., Shaw J. and Keays D.A. 2012. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature, 484: 367–370. https://doi.org/10.1038/nature11046 Tsvey A.L. 2023. Endocrine mechanisms controlling the migratory disposition in birds. Proceedings of the Zoological Institute RAS, 327(4): 683–718. https://doi.org/10.31610/trudyzin/2023.327.4.683 Von Middendorff A.T. 1855. Die Isepiptesen Russlands. Grundlagen zur Erforschung der Zugzeiten und Zugrichtungen der Vögel Russlands. Memoires de Academie de Sciences de St. Petersbourg. Serie VI, 8: 1–143. Von Rönn J.A.C., Shafer A.B.A. and Wolf J.B.W. 2016. Disruptive selection without genome-wide evolution across a migratory divide. Molecular Ecology, 25(11): 2529–2541. https://doi.org/10.1111/mec.13521 Wiltschko W. 1968. Über den Einfluβ statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Zeitschrift für Tierpsychologie, 25: 537–558. https://doi.org/10.1111/j.1439-0310.1968.tb00028.x Wiltschko W. 1978. Further analysis of the magnetic compass of migratory birds. In: K. Schmidt-Koenig and W.T. Keeton (Eds). Animal migration, navigation and homing. Springer, Berlin: 302–310. https://doi.org/10.1007/978-3-662-11147-5_29 Wiltschko W., Freire R., Munro U., Ritz T., Rogers L., Thalau P. and Wiltschko R. 2007. The magnetic compass of domestic chickens, Gallus gallus. Journal of Experimental Biology, 210(13): 2300–2310. https://doi.org/10.1242/jeb.004853 Wiltschko W., Gesson M. and Wiltschko R. 2001. Magnetic compass orientation of European robins under 565 nm green light. Naturwissenschaften, 88(9): 387–390. https://doi.org/10.1007/s001140100248 Wiltschko W., Munro U., Ford H. and Wiltschko R. 1993. Red light disrupts magnetic orientation of migratory birds. Nature, 364(6437): 525–527. https://doi.org/10.1038/364525a0 Wiltschko W. and Wiltschko R. 1972. Magnetic compass of European robins. Science, 176(4030): 62–64. https://doi.org/10.1126/science.176.4030.62 Wiltschko W. and Wiltschko R. 1995. Migratory orientation of European Robins is affected by the wavelength of light as well as by a magnetic pulse. Journal of Comparative Physiology A, 177(3): 363–369. https://doi.org/10.1007/BF00192425 Wiltschko W. and Wiltschko R. 1999. The effect of yellow and blue light on magnetic compass orientation in European Robins, Erithacus rubecula. Journal of Comparative Physiology A, 184(3): 295–299. https://doi.org/10.1007/s003590050327 Wiltschko W. and Wiltschko R. 2001. Light-dependent magnetoreception in birds: the behaviour of European robins, Erithacus rubecula, under monochromatic light of various wavelengths and intensities. Journal of Experimental Biology, 204(19): 3295–3302. https://doi.org/10.1242/jeb.204.19.3295
|
© Zoological Institute of the Russian Academy of Sciences
|