Применение референтного интервала для оценки нормальной изменчивости некоторых показателей антиоксидантной системы в печени и мышцах трехиглой колюшкиТруды Зоологического института РАН, 2024, 328(4): 707–725 · https://doi.org/10.31610/trudyzin/2024.328.4.707 Резюме При проведении исследований воспроизводимость и правильная оценка полученных результатов являются важными задачами, для решения которых необходимо использовать современные методы и подходы. Для оценки состояния биологических систем часто применяется тестирование значимости нулевой гипотезы относительно предполагаемых значений «нормы». Однако в последнее время дихотомический подход подтверждения или опровержения нулевой гипотезы критикуется специалистами в области анализа данных из-за отсутствия валидации методов оценки p-уровня значимости и биологического обоснования исследуемых гипотез. Поэтому был предложен новый подход для определения «нормального» состояния биологических систем, сложившийся в теорию референтных значений (РЗ). Понятия референтного интервала (РИ) и референтных значений стали общепринятым в различных областях исследований. В нашей работе проведена оценка РИ показателей антиоксидантной системы (АОС) (глутатион S-трансфераза, каталаза, гваякол-зависимая пероксидаза, супероксиддисмутаза) в печени и мышцах самцов трехиглой колюшки Gasterosteus aculeatus L., выловленных в губе Сельдяная Белого моря. Трехиглая колюшка является многочисленным, одним из наиболее изучаемых видов рыб в Белом море и выступает в роли модельного объекта в исследованиях по популяционной генетике, эволюционной биологии и экологии. АОС участвует в защите организма от негативного влияния экзогенных и эндогенных факторов, вызывающих окислительный стресс, а ее показатели применяются в качестве биомаркеров физиологического состояния организма. Также проведено сравнение активности ферментов АОС колюшки из других биотопов Белого моря (пролив Сухая Салма и лагуна Колюшковая) между собой и относительно рассчитанных РЗ. Колюшка из лагуны Колюшковая и пролива Сухая Салма различались по активности супероксиддисмутазы в печени, при этом средние значения активности фермента вошли в РИ. Для оценки воспроизводимости статистических тестов проведено моделирование влияния размера выборки колюшки на результат сравнения выборок с помощью t-критерия симуляции случайной выборки, определены объемы выборок исследуемых признаков с наибольшей дисперсией тип зависимости и объемы выборок при 50% вероятности положительного теста. Результаты исследования могут быть использованы как для анализа процессов, происходящих в популяции трехиглой колюшки в период нереста, так и для мониторинга экосистемы Белого моря в целом, учитывая ключевую роль колюшки в этой системе. Ключевые слова антиоксидантная система, Белое море, мышцы, печень, референтный интервал, трехиглая колюшка, Gasterosteus aculeatus
Поступила в редакцию 17 мая 2024 г. · Принята в печать 11 ноября 2024 г. · Опубликована онлайн 25 декабря 2024 г. Литература Bakhvalova A.E., Ivanova T.S., Ivanov M.V., Demchuk A.S., Movchan E.A. and Lajus D.L. 2016. Long-term changes in the role of threespine stickleback Gasterosteus aculeatus in the White Sea: predatory fish consumption reflects fluctuating stickleback abundance during the last century. Evolutionary Ecology Research, 17(3): 317–334. Beers R.F. and Sizer I.W. 1952. A spectrophotometric method for measuring the breakdown of hydrogenperoxide by catalase. The Journal of biological chemistry, 195: 133–140. https://doi.org/10.1016/s0021-9258(19)50881-x Bell M.A. and Foster S.A. 1994. The evolutionary biology of the three-spine stickleback. Oxford University Press, Oxford, New York, Tokyo, 571 p. Berner D. and Amrhein V. 2022. Why and how we should join the shift from significance testing to estimation. Journal of Evolutionary Biology, 35(6): 777–787. https://doi.org/10.1111/jeb.14009 Catteau A., Bado-Nilles A., Beaudouin R., Tebby C., Joachim S., Palluel O., Turiès C., Chrétien N., Nott K., Ronkart S., Geffard A. and Porcher J.M. 2021. Water quality of the Meuse watershed: Assessment using a multi-biomarker approach with caged three-spined stickleback (Gasterosteus aculeatus L.). Ecotoxicology and Environmental Safety, 208: 111407. https://doi.org/10.1016/j.ecoenv.2020.111407 Ceriotti F. and Henny J. 2008. “Are my laboratory results normal?” Considerations to be made concerning reference intervals and decision limits. eJIFCC, 19(2): 106–114. Available at: https://pmc.ncbi.nlm.nih.gov/articles/PMC4975205/ Ceriotti F., Hinzmann R. and Panteghini M. 2009. Reference intervals: the way forward. Annals of Clinical Biochemistry, 46(Pt 1): 8–17. https://doi.org/10.1258/acb.2008.008170 Chance B. and Maehly A.C. 1955. Assay of Catalase and Peroxidase. Methods in Enzymology, 2: 764–775. https://doi.org/10.1016/S0076-6879(55)02300-8 Clinical & Laboratory Standards Institute (CLSI). 2008. Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; Approved Guideline – Third Edition. CLSI document C28-A3. Wayne, PA: Clinical and Laboratory Standards Institute, 59 p. Demchuk A., Ivanov M., Ivanova T., Polyakova N., Golovin P. and Lajus D. 2018. Feeding of the threespine stickleback Gasterosteus aculeatus (Linnaeus, 1758) in spawning grounds. Transactions of KarRC RAS, 4: 42–58. [In Russian]. https://doi.org/10.17076/them818 Dixon W.J. 1953. Processing Data for Outliers. Biometrics, 9(1): 74–89. https://doi.org/10.2307/3001634 Dorgham A.S., Golovin P.V., Ivanova T.S., Ivanov M.V., Saveliev P.D. and Lajus D.L. 2018. Morphological variation of threespine stickleback (Gasterosteus aculeatus) on different stages of spawning period. Transactions of KarRC RAS, 4: 59–73. [In Russian]. https://doi.org/10.17076/them819 Finnegan D. 2022. Reference Intervals. R package version 1.3.0. Available from: https://CRAN.R-project.org/package=referenceIntervals (accessed 24 October 2023) Fridovich I. 1975. Superoxide Dismutases. Annual Review of Biochemistry, 44: 147–159. https://doi.org/10.1146/annurev.bi.44.070175.001051 Friedrichs K.R., Harr K.E., Freeman K.P., Szladovits B., Walton R.M., Barnhart K.F. and Blanco-Chavez J. 2012. ASVCP reference interval guidelines: determination of de novo reference intervals in veterinary species and other related topics. Veterinary Clinical Pathology, 41: 441–453. https://doi.org/10.1111/vcp.12006 GOST R 53022.3-2008. 2009. Clinical laboratory technologies. Requirements of quality of clinical laboratory tests. Part 3. Assessment of laboratory tests clinical significance. [In Russian]. Available from: https://protect.gost.ru/document1.aspx?control=31&baseC=6&page=0&month=8&year=2009&search=&id=174413 (accessed 24 October 2023) Gräsbeck R. and Saris N-E. 1969. Establishment and use of normal values. Explore the current issue of Scandinavian Journal of Clinical and Laboratory Investigation, 26(Suppl. 110): 62–63. Gräsbeck R., Siest G., Wilding P., Williams G.Z. and Whitehead T.P. 1978. IFCC Expert Panel on the Theory of Reference Values. Provisional recommendation on the theory of reference values. Part 1. The concept of reference values. Clinica Chimica Acta, 87: 459F–65F. https://doi.org/10.1093/clinchem/25.8.1506 Gross J. and Ligges U. 2015. Nortest: Tests for Normality. R package version 1.0-4. Available from: https://CRAN.R-project.org/package=nortest Habig W.H., Pabst M.J. and Jakoby W.B. 1974. GlutathioneS-Transferases. The first enzymatic step inmercapturic acid formation. The Journal of biological chemistry, 249: 7130–7139. https://doi.org/10.1016/S0021-9258(19)42083-8 Henny J., Petitclerc C., Fuentes-Arderiu X., Petersen P.H., Queraltó J.M., Schiele F. and Siest G. 2000. Need for revisiting the concept of reference values. Clinical Chemistry and Laboratory Medicine, 38(7): 589–95. https://doi.org/10.1515/CCLM.2000.085 Henny J., Vassault A., Boursier G., Vukasovic I., Mesko Brguljan P., Lohmander M., Ghita I., Andreu F.A., Kroupis C., Sprongl L., Thelen M.H., Vanstapel F.J., Vodnik T., Huisman W., Vaubourdolle M., on behalf of the Working Group Accreditation and ISO/CEN standards (WG-A/ISO) of the EFLM. 2016. Recommendation for the review of biological reference intervals in medical laboratories. Clinical Chemistry and Laboratory Medicine, 54(12): 1893–1900. https://doi.org/10.1515/cclm-2016-0793 Horn P.S., Feng L., Li Y. and Pesce A.J. 2014. Effects of outliers and nonhealthy individuals on reference interval estimation. Clinical Chemistry, 47: 2137–2145. https://doi.org/10.1093/clinchem/47.12.2137 Hoseinifar S.H., Yousefi S., Van Doan H., Ashouri G., Gioacchini G., Maradonna F. and Carnevali O. 2021. Oxidative Stress and Antioxidant Defense in Fish: The Implications of Probiotic, Prebiotic, and Synbiotics. Reviews in Fisheries Science & Aquaculture, 29(2): 198–217. https://doi.org/10.1080/23308249.2020.1795616 Hrubec T.C., Cardinale J.L. and Smith S.A. 2000. Hematology and plasma chemistry reference intervals for cultured tilapia (Oreochromis hybrid). Veterinary Clinical Pathology, 29(1): 7–12. https://doi.org/10.1111/j.1939-165x.2000.tb00389.x Jan K., Ahmed I. and Dar N.A. 2021. Haematological and serum biochemical reference values of snow trout, Schizothorax labiatus habiting in river Sindh of Indian Himalayan region. The Journal of Fish Biology, 98(5): 1289–1302. https://doi.org/10.1111/jfb.14661 Joy S., Alikunju A.P., Jose J., Sudha H.S.H., Parambath P.M., Puthiyedathu S.T. and Philip B. 2017. Oxidative stress and antioxidant defense responses of Etropluss uratensis to acute temperature fluctuations. The Journal of Thermal Biology, 70(Pt B): 20–26. https://doi.org/10.1016/j.jtherbio.2017.10.010 Krupnova M., Ivanova T. and Nemova N. 2019. The activity of lysosomal proteases in the organs of female threespine stickleback (Gasterosteus aculeatus Linnaeus) in the spawning period. Transactions of KarRC RAS, 6: 37–43. [In Russian]. https://doi.org/10.17076/eb886 Lajus D., Ivanova T., Rybkina E., Lajus J. and Ivanov M. 2021. Multidecadal fluctuations of threespine stickleback in the White Sea and their correlation with temperature. ICES Journal of Marine Science, 78(2): 653–665. https://doi.org/10.1093/icesjms/fsaa192 Lajus D.L., Golovin P.V., Yurtseva A.O., Ivanova T.S., Dorgham A.S. and Ivanov M.V. 2019. Fluctuating asymmetry as an indicator of stress and fitness in stickleback: a review of the literature and examination of cranial structures. Evolutionary Ecology Research, 20(1): 83–106. Lajus D.L., Golovin P.V., Zelenskaia A.E., Demchuk A.S., Dorgham A.S., Ivanov M.V., Ivanova T.S., Murzina S.A., Polyakova N.V., Rybkina E.V. and Yurtseva A.O. 2020a. Threespine stickleback of the White Sea: population characteristics and role in the ecosystem. Contemporary Problems of Ecology, 2: 167–183. [In Russian]. https://doi.org/10.15372/SEJ20200203 Lajus D.L., Lysenko L.A., Kantserova N.P., Tushina E.D., Ivanova T.S. and Nemova N.N. 2020b. Spatial heterogeneity and temporal dynamics of protein degrading activity and life-history traits in threespine stickleback Gasterosteus aculeatus. International Aquatic Research, 12(3): 161–170. https://doi.org/10.22034/iar.2020.1894323.1019 Lee J.W., Choi H., Hwang U.K., Kang J.C., Kang Y.J., Kim K.I. and Kim J.H. 2019. Toxic effects of lead exposure on bioaccumulation, oxidative stress, neurotoxicity, and immune responses in fish: A review. Environmental Toxicology and Pharmacology, 68: 101–108. https://doi.org/10.1016/j.etap.2019.03.010 Lessells C.K. 2008. Neuroendocrine control of life histories: what do we need to know to understand the evolution of phenotypic plasticity? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1497): 1589–98. https://doi.org/10.1098/rstb.2007.0008 Lushchak V.I. 2016. Contaminant-induced oxidative stress in fish: a mechanistic approach. Fish Physiology and Biochemistry, 42(2): 711–47. https://doi.org/10.1007/s10695-015-0171-5 Lysenko L., Kantserova N., Tushina E., Poliakova N., Lajus D. and Nemova N. 2018. The White Sea threespine stickleback, Gasterosteus aculeatus, differentiation at the beginning of spawning by the activity of calcium-dependent proteases and population characteristics. Transactions of KarRC RAS, 5: 79–88. [In Russian]. https://doi.org/10.17076/eco700 Marchand A., Tebby C., Beaudouin R., Catteau A., Porcher J.M., Turiès C. and Bado-Nilles A. 2020. Reliability evaluation of biomarker reference ranges for mesocosm and field conditions: Cellular innate immunomarkers in Gasterosteus aculeatus. Science of The Total Environment, 698: 134333. https://doi.org/10.1016/j.scitotenv.2019.134333 Marchand A., Tebby C., Beaudouin R., Hani Y.M.I., Porcher J.M., Turies C. and Bado-Nilles A. 2019. Modelling the effect of season, sex, and body size on the three-spined stickleback, Gasterosteus aculeatus, cellular innate immunomarkers: A proposition of laboratory reference ranges. Science of The Total Environment, 648: 337–349. https://doi.org/10.1016/j.scitotenv.2018.07.381 Marchand A., Tebby C., Catteau A., Turiès C., Porcher J.M. and Bado-Nilles A. 2021. Application in a biomonitoring context of three-spined stickleback immunomarker reference ranges. Ecotoxicology and Environmental Safety, 223: 112580. https://doi.org/10.1016/j.ecoenv.2021.112580 Martínez-Álvarez R.M., Morales A.E. and Sanz A. 2005. Antioxidant defenses in fish: Biotic and abiotic factors. Reviews in Fish Biology and Fisheries, 15(1–2): 75–88. https://doi.org/10.1007/s11160-005-7846-4 McKinnon J.S. and Rundle H.D. 2002. Speciation in nature: the threespine stickleback model systems. Trends in Ecology & Evolution, 17: 480–488. https://doi.org/10.1016/S0169-5347(02)02579-X National Committee for Clinical Laboratory Standards (NCCLS). 2000. How to Define and Determine Reference Intervals in the Clinical Laboratory; Approved Guideline – Second Edition. NCCLS document C28-A2. NCCLS, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087–1898, USA, 35 p. Noble J.E. and Bailey M.J. 2009. Quantitation of Protein. Methods in Enzymology, 463: 73–95. https://doi.org/10.1016/S0076-6879(09)63008-1 Nussey D.H. 2005. Selection on Heritable Phenotypic Plasticity in a Wild Bird Population. Science, 310(5746): 304–306. https://doi.org/10.1126/science.1117004 Östlund-Nilsson S., Mayer I. and Huntingford F.A. 2007. Biology of the three-spine stickleback. Boca Raton: CRC Press, 392 p. Ozarda Y. 2016. Reference intervals: current status, recent developments and future considerations. Biochemia Medica, 26(1): 5–16. https://doi.org/10.11613/BM.2016.001 Poole T. 1997. Happy animals make good science. Laboratory Animals, 31: 116–124. https://doi.org/10.1258/002367797780600198 R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.R-project.org/ Rabinovich A., Vysotskaya R., Lyubartsev A., Quirke N. and Lobaskin V. 2017. Assessing the state of an organism and toxicity of substances using biochemical indicators. Transactions of KarRC RAS, 9: 84–97. [In Russian]. https://doi.org/10.17076/eco634 RStudio Team. 2019. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA Available from: http://www.rstudio.com/ Sanchez W., Aït-Aïssa S., Palluel O., Ditche J.M. and Porcher J.M. 2007. Preliminary investigation of multi-biomarker responses in three-spined stickleback (Gasterosteus aculeatus L.) sampled in contaminated streams. Ecotoxicology, 16(2): 279–87. https://doi.org/10.1007/s10646-006-0131-z Shahjahan M., Islam M.J., Hossain M.T., Mishu M.A., Hasan J. and Brown C. 2022. Blood biomarkers as diagnostic tools: An overview of climate-driven stress responses in fish. Science of the Total Environment, 843: 156910. https://doi.org/10.1016/j.scitotenv.2022.156910 Smirnov L., Sukhovskaya I. and Kochneva A. 2019b. Variability of some antioxidant defense parametersand concentration of protein in the larvae of the three-spined stickleback (Gasterosteus aculeatus) in White Sea in the summer. Principles of the Ecology, 2: 98–109. [In Russian]. https://doi.org/10.15393/j1.art.2019.8542 Smirnov L., Sukhovskaya I., Borvinskaya E. and Lajus D. 2019a. The variability of some parameters of antioxidant protection in the muscle and liver of the three-spined stickleback (Gasterosteus aculeatus) in the white sea during the spawning period. Transactions of KarRC RAS, 12: 55–66. [In Russian]. https://doi.org/10.17076/eb1055 Solberg H.E. 1987. International Federation of Clinical Chemistry (IFCC). Approved recommendation on the theory of reference values. Part 5. Statistical treatment of collected reference values. Clinica Chimica Acta, 170: S13–S32. https://doi.org/10.1016/0009-8981(87)90151-3 Stoliar O. and Lushchak V. 2012. Environmental Pollution and Oxidative Stress in Fish. In: V. Lushchak (Ed.). Oxidative Stress – Environmental Induction and Dietary Antioxidants. InTech, Rijeka, Croatia: 131–166. https://doi.org/10.5772/38094 Sukhovskaya I., Borvinskaya E., Smirnov L. and Nemova N. 2010. Comparative analysis of the methods for determination of protein concentration – spectrophotometry in the 200–220 nm range and the bradford protein assay. Transactions of KarRC RAS. The “Experimental Biology” series, 2: 68–71. [In Russian]. Vysotskaya R., Buoy E., Krupnova M., Nemova N. and Lajus D. 2021. Participation of acid hydrolases in the adaptations of juvenile three spine sticklebacks Gasterosteus aculeatus L. of the White Sea. Transactions of KarRC RAS, 11: 69–79. [In Russian]. https://doi.org/10.17076/eb1504
|
© Зоологический институт Российской академии наук
|