Роль олеандровых рощ для остановок перелетных воробьиных птиц

Л. Бозо

Труды Зоологического института РАН, 2024, 328(2): 298–307   ·   https://doi.org/10.31610/trudyzin/2024.328.2.298

Полный текст  

Резюме

Во время перелетов птицам необходимы места отдыха, где они могут восстановить силы. В сельскохозяйственных районах птицы могут использовать для этого лесопосадки, состоящие из чужеродных видов. В настоящей работе рассмотрен вопрос о значении олеандровых рощ для перелетных воробьиных птиц. Изучена экология птиц 15 видов, мигрирующих на дальние и ближние расстояния, в районах их остановок. Рассчитана минимальная продолжительность остановок и степень накопления жира для птиц каждого вида, с разделением их на группы по характеру используемых биотопов и протяженности миграций. Для трех видов оценен возможный диапазон дальности перелета, исходя из накопленного жира, массы тела и длины крыльев. Результаты показывают, что олеандровые лесопосадки используются птицами на остановках по-разному. За время, проведенное на отдыхе, масса тела птиц, как правило, существенно не меняется. Лесные виды и птицы сельскохозяйственных угодий проводят на остановках наибольшее время. Несмотря на возможно высокий уровень внутри- и межвидовой конкуренции, олеандровые рощи могут обеспечить птиц достаточным количеством корма в течение всего периода остановки. У мигрантов на короткие расстояния меньше жира, чем у птиц, осуществляющих дальние перелеты, что обусловлено, очевидно, различной стратегией их миграций. В зависимости от протяженности перелетов птиц варьирует их поведение на остановках. Исследования биологии птиц на местах их стоянок в ходе миграций важны с природоохранной точки зрения.

Ключевые слова

оценка дальности перелета, миграции птиц, олеандровые рощи, места остановок

Поступила в редакцию 20 февраля 2024 г.  ·  Принята в печать 20 апреля 2024 г.  ·  Опубликована 24 июня 2024 г.

Литература

Arizaga J., Maggini I., Hama F., Crespo A. and Gargallo G. 2013. Site- and species-specific fuel load of European Afrotropical passerines on arrival at three oases of southeast Morocco during spring migration. Bird Study, 60: 11–21. https://doi.org/10.1080/00063657.2012.735222

Benton T.G., Vickery J.A. and Wilson J.D. 2003. Farmland biodiversity: is habitat heterogeneity the key? Trends in Ecology and Evolution, 18: 182–188. https://doi.org/10.1016/S0169-5347(03)00011-9

Blount J.D., Horns J.J., Kittelberger K.D., Neate Clegg M.H. and Şekercioğlu Ç.H. 2021. Avian use of agricultural areas as migration stopover sites: A review of crop management practices and ecological correlates. Frontiers in Ecology and Evolution, 9: 650641. https://doi.org/10.3389/fevo.2021.650641

Bozó L. and Bozóné Borbáth E. 2020. Migration and stopover ecology of European Robins Erithacus rubecula in an oleaster forest in southeastern Hungary. Ringing and Migration, 35: 24–31. https://doi.org/10.1080/03078698.2021.2001676

Bozó L., Csörgő T. and Anisimov Y. 2019. Estimation of flight range of migrant leaf-warblers at Lake Baikal. Ardeola, 67: 57–67. https://doi.org/10.13157/arla.67.1.2020.sc1

Collet L. and Heim W. 2022. Differences in stopover duration and body mass change among Emberiza buntings during autumn migration in the Russian Far East. Journal of Ornithology, 163: 779–789. https://doi.org/10.1007/s10336-022-01976-3

Csörgő T., Karcza Zs., Halmos G., Magyar G., Gyurácz J., Szép T., Bankovics A., Schmidt A. and Schmidt E. 2009. Magyar Madárvonulási Atlasz. Kossuth Kiadó Zrt., Budapest, 672 p.

Dänhardt J., Green M., Lindström Å., Rundlöf M. and Smith H.G. 2010. Farmland as stopover habitat for migrating birds – effects of organic farming and landscape structure. Oikos, 119: 1114–1125. https://doi.org/10.1111/j.1600-0706.2009.18106.x

Delingat J., Bairlein F. and Hedenström A. 2008. Obligatory barrier crossing and adaptive fuel management in migratory birds: the case of the Atlantic crossing in Northern wheatears (Oenanthe oenanthe). Behaviour Ecology and Sociobiology, 62: 1069–1078. https://doi.org/10.1007/s00265-007-0534-8

Demongin L. 2016. Identification guide to birds in the hand. Beauregard-Vendon, France, 392 p.

Domer A., Vinepinsky E., Bouskila A., Shochat E. and Ovadia O. 2021. Optimal stopover model: A state-dependent habitat selection model for staging passerines. Journal of Animal Ecology, 90: 2793–2805. https://doi.org/10.1111/1365-2656.13581

Ellegren H. 1991. Stopover ecology of autumn migrating Bluethroats Luscinia scvecica in relation to age and sex. Ornis Scandinavica, 22: 340–348. https://doi.org/10.2307/3676506

Erni B., Liechti F. and Bruderer B. 2002. Stopover strategies in passerine bird migration: a simulation study. Journal of Theoretical Biology, 219: 479–493. https://doi.org/10.1006/jtbi.2002.3138

Fourcade J.M., Fontanilles P. and Demongin L. 2021. Fuel management, stopover duration and potential flight range of pied flycatcher Ficedula hypoleuca staying in South-West France during autumn migration. Journal of Ornithology, 163(1): 61–70. https://doi.org/10.1007/s10336-021-01941-6

Fransson T. 1998. Patterns of migratory fuelling in whitethroats Sylvia communis in relation to departure. Journal of Avian Biology, 29: 569–573. https://doi.org/10.2307/3677177

Galle A.M., Linz G.M., Homan J.H. and Bleier W.J. 2009. Avian use of harvested crop fields in North Dakota during spring migration. Western North American Naturalist, 69: 491–500. https://doi.org/10.3398/064.069.0409

Gyurácz J., Bánhidi P., Góczán J., Illés P., Kalmár S., Koszorús P. and Varga L. 2023. Fuel load and flight range estimation of migrating passerines in the western part of the Carpathian Basin during the autumn migration. Acta Zoologica Academiae Scientiarum Hungaricae, 69: 47–61. https://doi.org/10.17109/AZH.69.1.47.2023

Hahn S., Bauer S. and Liechti F. 2009. The natural link between Europe and Africa – 2.1 billion birds on migration. Oikos, 118: 624–626. https://doi.org/10.1111/j.1600-0706.2008.17309.x

Hansson M. and Pettersson J. 1989. Competition and fat deposition in Goldcrests (Regulus regulus) at a migration stop-over site. Vogelwarte, 35: 21–31.

Hardin F.O., Beckman A.K., Earl A.D. and Grace J.K. 2022. Optimizing and competing for resources. In: Proppe D.S. (Ed). Songbird Behavior and Conservation in the Anthropocene. CRC Press, Taylor and Francis Group: 155–190. https://doi.org/10.1201/9780429299568-7

Hutto R.L. 1998. On the importance of stopover sites to migrating birds. Auk, 115: 823–825. https://doi.org/10.2307/4089500

Jenni L. and Jenni-Eiermann S. 1998. Fuel supply and metabolic constraints in migrating birds. Journal of Avian Biology, 29: 521–528. https://doi.org/10.1016/S0305-0491(00)80104-2

Kaiser A. 1993. A new multi-category classification of subcutaneous fat deposits of songbirds. Journal of Field Ornithology, 64: 246–255.

Keller V., Herrando S., Voríšek P., Franch M., Kipson M., Milanesi P., Martí D., Anton M., Klvanová A., Kalyakin M.V., Bauer H.-G. and Foppen R.P.B. 2020. European Breeding Bird Atlas 2. Distribution, Abundance and Change. European Bird Census Council & Lynx Edicions, Barcelona, 967 p.

Krapu G.L., Brandt D.A., Kinzel P.J. and Pearse A.T. 2014. Spring migration ecology of the mid-continent sandhill crane population with an emphasis on use of the Central Platte River Valley, Nebraska. Wildlife Monographs, 189: 1–41. https://doi.org/10.1002/wmon.1013

Ktitorov P., Bairlein F. and Dubinin M. 2007. The importance of landscape context for songbirds on migration: body mass gain is related to habitat cover. Landscape Ecology, 23: 169–179. https://doi.org/10.1007/s10980-007-9177-4

Lindström Å. 1995. Stopover ecology of migrating birds: some unsolved questions. Israel Journal of Zoology, 41: 407–416.

Linscott J.A. and Senner N.R. 2021. Beyond refueling: Investigating the diversity of functions of migratory stopover events. Condor, 123: duaa074. https://doi.org/10.1093/ornithapp/duaa074

Lupi S., Goymann W., Cardinale M. and Fusani L. 2016. Physiological conditions influence stopover behavior of short-distance migratory passerines. Journal of Ornithology, 157: 583–589. https://doi.org/10.1007/s10336-015-1303-5

Marini L., Klimek S. and Battisti A. 2011. Mitigating the impacts of the decline of traditional farming on mountain landscapes and biodiversity: a case study in the European Alps. Environmental Science and Policy, 14: 258–267. https://doi.org/10.1016/j.envsci.2010.12.003

Mehlman D., Mabey S., Ewert D., Duncan C., Abel B., Cimprich D., Sutter R. and Woodrey M. 2005. Conserving stopover sites for forest-dwelling migratory landbirds. Auk, 122: 1281–1290. https://doi.org/10.1093/auk/122.4.1281

Moore F.R. and Aborn D.A. 2000. Mechanisms of enroute habitat selection: How do migrants make habitat decisions during stopover? Studies in Avian Biology, 20: 34–42.

Moore F.R. and Yong W. 1991. Evidence of food-based competition among passerine migrants during stopover. Behaviour Ecology and Sociobiology, 28: 85–90. https://doi.org/10.1007/BF00180984

Pearse A.T., Krapu G.L., Cox R.R. and Bruce E. 2011. Spring-migration ecology of Northern Pintails in south-central Nebraska. Waterbirds, 34: 10–18. https://doi.org/10.1675/063.034.0102

Petit D.R. 2000. Habitat use by landbirds along Neartic-Neotropical migration routes: Implications for conservation of stopover habitats. Studies in Avian Biology, 20: 15–33. https://doi.org/10.2307/3802919

Pettersson J. and Hasselquist D. 1985. Fat deposition and migration capacity of robins Erithacus rubecula and goldcrests Regulus regulus at Ottenby, Sweden. Ringing and Migration, 6: 66–76. https://doi.org/10.1080/03078698.1985.9673859

Reif J. 2013. Long-term trends in bird populations: a review of patterns and potential drivers in North America and Europe. Acta Ornithologica, 48: 1–16. https://doi.org/10.3161/000164513X669955

Roques S., Henry P.Y., Guyot G., Bargain B., Cam E. and Pradel R. 2020. When to depart from a stopover site? Time-since-arrival matters more than weather conditions. Auk, 139: ukab057. https://doi.org/10.1093/ornithology/ukab057

Salewski V., Schmaljohann H. and Liechti F. 2010. Spring passerine migrants stopping over in the Sahara are not fall-outs. Journal of Ornithology, 151: 371–378. https://doi.org/10.1007/s10336-009-0464-5

Sandberg R. 1996. Fat reserves of migrating passerines at arrival on the breeding grounds in Swedish Lapland. Ibis, 138: 514–524. https://doi.org/10.1111/j.1474-919X.1996.tb08072.x

Sander M.M., Eccard J.A. and Heim W. 2017. Flight range estimation of migrant Yellow-browed Warblers Phylloscopus inornatus on the East Asian flyway. Bird Study, 64: 569–572. https://doi.org/10.1080/00063657.2017.1409696

Schaub M., Pradel R., Jenni L. and Lebreton J.D. 2001. Migrating birds stop over longer than usually thought: an improved capture–recapture analysis. Ecology, 82(3): 852–859. https://doi.org/10.1890/0012-9658(2001)082[0852:MBSOLT]2.0.CO;2

Schmaljohann H. and Eikenaar C. 2017. How do energy stores and changes in these affect departure decisions by migratory birds? A critical view on stopover ecology studies and some future perspectives. Journal of Comparative Physiology, 203: 411–429. https://doi.org/10.1007/s00359-017-1166-8

Schmaljohann H., Fox J.W. and Bairlein F. 2012. Phenotypic response to environmental cues, orientation and migration costs in songbirds flying halfway around the world. Animal Behaviour, 84: 623–640. https://doi.org/10.1016/j.anbehav.2012.06.018

Schmaljohann H., Eikenaar C. and Sapir N. 2022. Understanding the ecological and evolutionary function of stopover in migrating birds. Biological Reviews, 97(4): 1231–1252. https://doi.org/10.1111/brv.12839

Schupkégel B., Bozó L. and Tölgyesi Cs. 2020. The role of a water canal and secondary forest for migrants. Ring, 42: 3–13. https://doi.org/10.2478/ring-2020-0001

Şekercioğlu C.H. 2012. Bird functional diversity and ecosystem services in tropical forests, agroforests and agricultural areas. Journal of Ornithology, 153: 153–161. https://doi.org/10.1007/s10336-012-0869-4

Svensson L. 1992. Identification guide to European passerines. Svensson, Stockholm, 375 p.

Szép T., Liechti F., Nagy K., Nagy Zs. and Hahn S. 2017. Discovering the migration and non-breeding areas of sand martins and house martins breeding in the Pannonian basin (central-eastern Europe). Journal of Avian Biology, 48: 114–122. https://doi.org/10.1111/jav.01339

Weber T.P., Houston A.I. and Ens B.J. 1999. Consequences of habitat loss at migratory stopover sites: a theoretical investigation. Journal of Avian Biology, 30: 416–426. https://doi.org/10.2307/3677014

Webster M.S., Marra P.P., Haig S.M., Bensch S. and Holmes R.T. 2002. Links between worlds: unraveling migratory connectivity. Trends in Ecology and Evolution, 17: 76–83. https://doi.org/10.1016/S0169-5347(01)02380-1

Wilson J.D., Evans A.D. and Grice P.V. 2009. Bird conservation and agriculture. Cambridge University Press, Cambridge, 394 p.

Yong W., Finch D.M., Moore F.R. and Kelly J.F. 1998. Stopover ecology and habitat use of migratory Wilson’s Warblers. The Auk, 115(4): 829–842. https://doi.org/10.2307/4089502

 

© Зоологический институт Российской академии наук
Последнее изменение: 23 сентября 2024 г.