Гидробиологическая характеристика малых озер северной Карелии в период ледоставаТруды Зоологического института РАН, 2023, 327(3): 451–467 · https://doi.org/10.31610/trudyzin/2023.327.3.451 Резюме Жизнь озер в зимний период до сих пор исследована недостаточно. Цель данной статьи – сравнительный анализ количественного развития планктонных и донных сообществ и абиотических условий их существования в подледный период в двух малых (<1 км2) северных озерах, сильно различающихся по морфометрии и степени гумификации воды. Выявлено существенное различие в сезонной динамике планктонных сообществ в исследованных озерах. В более глубоководном озере с неокрашенной гумусом водой количественное развитие фитопланктона в конце подледного периода было почти столь же значительно, как в период открытой воды. Необходимо отметить быстроту изменений подледного фитопланктона ранней весной: в апреле 2020 г. содержание в воде хлорофилла a за неделю изменилось более чем в шесть раз. В мелководном сильно гумифицированном озере массового развития фитопланктона подо льдом не наблюдалось. Для зоопланктона исследованных озер была характерна противоположная тенденция. В глубоководном озере зимний зоопланктон заметно уступал летнему по уровню количественного развития, в мелководном на протяжении всего периода исследований отмечалась высокая биомасса (~1 г/м2) зоопланктона. Макрозообентос озер в зимнее время, в целом, сохранял столь же высокий уровень количественного развития, как и в период открытой воды. Сезонные различия имели локальный характер и были вызваны перераспределением донных животных вследствие изменения кислородного и, возможно, температурного режима придонных вод. В частности, из-за гипоксийно-аноксийных условий в конце ледового периода донные животные мигрировали из профундальной зоны глубоководного озера. После схода льда и насыщения придонных вод кислородом сообщество профундали быстро восстанавливалось. Таким образом, количественное развитие биологических сообществ в зимний период может сильно различаться даже в близкорасположенных озерах, в частности, зависит от степени гумификации водоема. Учитывая высокую динамичность фитопланктона ранней весной, оценка роли подледного периода в жизни озер, по-видимому, требует многолетних исследований, включающих проведение детальных наблюдений в конце ледового периода. Ключевые слова зоопланктон, макрозообентос, подледный период, субарктические озера, фитопланктон, хлорофилл a Поступила в редакцию 4 апреля 2023 г. · Принята в печать 11 июля 2023 г. · Опубликована 25 сентября 2023 г. Литература Berezina N.A., Litvinchuk L.F. and Maximov A.A. 2021. Relations between the food spectrum of fishes and the composition of zooplankton and benthos in a subarctic lake. Inland Water Biology, 14(4): 438–448. https://doi.org/10.1134/S1995082921040052 Berezina N.A., Strelnikova A.P. and Maximov A.A. 2018. The benthos as the basis of vendace, Coregonus albula, and perch, Perca fluviatilis, diets in an oligotrophic sub-Arctic lake. Polar Biology, 41(9): 1789–1799. https://doi.org/10.1007/s00300-018-2319-0 Bondarenko N.A., Belykh O.I., Golobokova L.P., Artemyeva O.V., Logacheva N.F., Tikhonova I.V., Lipko I.A., Kostornova T.Y., Parfenova V.V., Khodzher T.V., Ahn T.S. and Zo Y.G. 2012. Stratified distribution of nutrients and extremophile biota within freshwater ice covering the surface of Lake Baikal. Journal of Microbiology, 50(1): 8–16. https://doi.org/10.1007/s12275-012-1251-1 Creed I.F., Bergström A.-K., Trick C.G., Grimm N.B., Hessen D.O., Karlsson J., Kidd K.A., Kritzberg E., McKnight D.M., Freeman E.C., Senar O.E., Andersson A., Ask J., Berggren M., Cherif M., Giesler R., Hotchkiss E.R., Kortelainen P., Palta M.M., Vrede T. and Weyhenmeyer G.A. 2018. Global change-driven effects on dissolved organic matter composition: Implications for food webs of northern lakes. Global Change Biology, 24(8): 3692–3714. https://doi.org/10.1111/gcb.14129 Determination of photosynthetic pigments. Report of SCOR–UNESCO working group 17 on determination of photosynthetic pigments. 1966. In: Determination of photosynthetic pigments in sea-water. Imprimerie Rolland-Paris, Paris: 9–18. Einem J.V. and Granéli W. 2010. Effects of fetch and dissolved organic carbon on epilimnion depth and light climate in small forest lakes in southern Sweden. Limnology and Oceanography, 55(2): 920–930. https://doi.org/10.4319/lo.2010.55.2.0920 Greze V.N. 1957. Basic features of a hydrobiology of Taimyr Lake. Trudy Vsesoyuznogo Gidrobiologicheskogo Obshchestva, 8: 183–218. [In Russian]. Gronskaya T.P. 2008. Water resources of lakes. Distribution over the territory. In: I.A. Shiklomanov (Ed.). Water resources of Russia and their use. State Hydrological Institute, Saint Petersburg: 166–167. [In Russian]. Hampton S.E. et al. 2017. Ecology under lake ice. Ecology Letters, 20(1): 98–111. https://doi.org/10.1111/ele.12699 Hampton S.E., Moore M.V., Ozersky T., Stanley E.H., Polashenski C.M. and Galloway A.W.E. 2015. Heating up a cold subject: prospects for under-ice plankton research in lakes. Journal of Plankton Research, 37(2): 277–284. https://doi.org/10.1093/plankt/fbv002 Hazuková V., Burpee B.T., McFarlane-Wilson I. and Saros J.E. 2021. Under ice and early summer phytoplankton dynamics in two Arctic lakes with differing DOC. Journal of Geophysical Research: Biogeosciences, 126(4): e2020JG005972. https://doi.org/10.1029/2020JG005972 Jansen J., Macintyre S., Barrett D., Chin Y.P., Cortés A., Forrest A., Hrycik A., Martin R., McMeans B., Rautio M. and Schwefel R. 2021. Winter limnology: How do hydrodynamics and biogeochemistry shape ecosystems under ice? Journal of Geophysical Research: Biogeosciences, 126: e2020JG006237. https://doi.org/10.1029/2020JG006237 Karlsson J., Byström P., Ask J., Ask P., Persson L. and Jansson M. 2009. Light limitation of nutrient-poor lake ecosystems. Nature, 460(7254): 506–509. https://doi.org/10.1038/nature08179 Kattsov V.M. and Semyonov S.M. (Eds). 2014. Second Roshydromet assessment report on climate change and its consequences in the Russian Federation. Roshydromet, Moscow, 1008 p. [In Russian]. Katz S.L., Izmest'eva L.R., Hampton S.E., Ozersky T., Shchapov K., Moore M.V., Shimaraeva S.V. and Silow E.A. 2015. The “Melosira years” of Lake Baikal: Winter environmental conditions at ice onset predict under-ice algal blooms in spring. Limnology and Oceanography, 60(6): 1950–1964. https://doi.org/10.1002/lno.10143 Khlebovich T.V. 2010. Structural and trophic characteristics of protozoan plankton in a subarctic lake (Northern Karelia). Inland Water Biology, 3: 260–265. https://doi.org/10.1134/S1995082910030090 Kirillin G., Leppäranta M., Terzhevik A., Granin N., Krüger J., Engelhardt C., Efremova T., Golosov S., Palshin N., Sherstyankin P., Zdorovennova G. and Zdorovennov R. 2012. Physics of seasonally ice-covered lakes: A review. Aquatic Sciences, 74: 659–682. https://doi.org/10.1007/s00027-012-0279-y Kitaev S.P. 2007. Basic general limnology for hydrobiologists and ichthyologists. Karelian Research Center RAS, Petrozavodsk, 395 p. [In Russian]. Korneva L.G. 2014. Biological cosequences of eutrophication. In: D.B. Gelashvili and G.B. Shurganova (Eds). Ecological monitoring. 8. Modern problems of monitoring of freshwater ecosystem. Nizhniy Novgorod University Press, Nizhniy Novgorod: 113–148. [In Russian]. Lavrentyeva G.M. 1981. Characteristic features of winter phytoplankton development in small lakes of North-West. Sbornik Nauchnykh Trudov GosNiorKh, 162: 89–103. [In Russian]. Litvinchuk L.F., Sharov A.N., Chernova E.N., Smirnov V.V. and Berezina N.A. 2023. Mutual links between microcystins-producing cyanobacteria and plankton community in clear and brown northern lakes. Food Webs: e00279. https://doi.org/10.1016/j.fooweb.2023.e00279 Manual for chemical analysis of inland waters. 1977. Hydrometeoizdat, Saint Petersburg, 541 p. [In Russian]. Manual for chemical analysis of seawater. 1993. Hydrometeoizdat, Saint Petersburg, 264 p. [In Russian]. Maximov A.A. 2021. Population dynamics of the glacial relict amphipods in a subarctic lake: role of density-dependent and density-independent factors. Ecology and Evolution, 11(22): 15905–15915. https://doi.org/10.1002/ece3.8260 Maximov A.A., Berezina N.A. and Maximova O.B. 2021. Interannual changes in benthic biomass under climate-induced variations in productivity of a small northern lake. Fundamental and Applied Limnology / Archiv für Hydrobiologie, 194(3): 187–199. https://doi.org/10.1127/fal/2020/1291 Maximov A.A., Maximova O.B. and Usov N.V. 2023. Seasonal dynamics of growth and production Monoporeia affinis (Amphipoda: Pontoporeiidae) in a subarctic lake: the role of temperature and trophic conditions. Inland Water Biology, 16(5): 912–921. McKay R.M.L., Beall B.F.N., Bullerjahn G.S. and LCDR Woityra W.C. 2011. Winter limnology on the Great Lakes: The role of the U.S. Coast Guard. Journal of Great Lakes Research, 37: 207–210. https://doi.org/10.1016/j.jglr.2010.11.006 Menshutkin V.V. and Filatov N.N. 2016. Model of under-ice ecological system of a large lake based on the application of cellular automata. Proceedings of the Karelian Research Centre of the Russian Academy of Sciences, 5: 76–87. [In Russian]. https://doi.org/10.17076/lim329 Nikulina V.N. 2016. Long-term changes of phytoplankton in the lake, not affected by anthropogenic impact (Lake Krivoe, North Karelia). Proceedings of the Zoological Institute RAS, 320(3): 336–347. [In Russian]. https://doi.org/10.31610/trudyzin/2016.320.3.336 Przhiboro A. and Sæther O.A. 2011. Littoral chironomid communities of two small lakes in northern Karelia (Russia) studied by emergence traps. In: X. Wang and X. Lui (Eds). Contemporary chironomid studies. Proceedings of the 17th international symposium on Chironomidae (6–9 July 2009, Nankai University, Tianjin, China). Nankai University Press, Nankai: 187–217. Przhiboro A.A. 1999. The quantitative characteristics of Diptera (Insecta) of the shallow littoral zone of small lakes in the North Karelia. Trudy Zoologicheskogo Instituta, 281: 129–134. Rautio M., Bayly I., Gibson J.A.E. and Nyman M. 2008. Zooplankton and zoobenthos in high-latitude water bodies. In: W.F. Vincent and J. Laybourn-Parry (Eds). Polar Lakes and Rivers: Limnology of Arctic and Antarctic Aquatic Ecosystems. Oxford Academic, Oxford: 231–247. https://doi.org/10.1093/acprof:oso/9780199213887.003.0013 Rautio M., Mariash H. and Forsström L. 2011. Seasonal shifts between autochthonous and allochthonous carbon contributes to zooplankton diets in a subarctic lake. Limnology and Oceanography, 56: 1513–1524. https://doi.org/10.4319/lo.2011.56.4.1513 Sabylina A.V. and Basov M.I. 2003. Abiotic environmental factors, primary production and destruction of organic matter in lakes Karelia. In: N.N. Filatov, T.I. Regerand, V.Kh. Lifshits and Yu.V. Karpechko (Eds). Hydroecological issues of Karelia and the use of aquatic resources. Karelian Research Center of Russian Academy of Sciences, Petrozavodsk: 72–91. [In Russian]. Salmi P. and Salonen K. 2015. Regular build-up of the spring phytoplankton maximum before ice-break in a boreal lake. Limnology and Oceanography, 61: 240–253. https://doi.org/10.1002/lno.10214 Salonen K., Leppäranta M., Viljanen M. and Gulati R.D. 2009. Perspectives in winter limnology: closing the annual cycle of freezing lakes. Aquatic Ecology, 43(3): 609–616. https://doi.org/10.1007/s10452-009-9278-z Senar O.E., Creed I.F. and Trick C.G. 2021. Lake browning may fuel phytoplankton biomass and trigger shifts in phytoplankton communities in temperate lakes. Aquatic Sciences, 83: 21. https://doi.org/10.1007/s00027-021-00780-0 Sharma S., Richardson D.C., Woolway R.I., Imrit M.A., Bouffard D., Blagrave K., Daly J., Filazzola A., Granin N., Korhonen J., Magnuson J., Marszelewski W., Matsuzaki S.-I.S., Perry W., Robertson D.M., Rudstam L.G., Weyhenmeyer G.A. and Yao H. 2021. Loss of ice cover, shifting phenology, and more extreme events in Northern Hemisphere lakes. Journal of Geophysical Research: Biogeosciences, 126: e2021JG00634. https://doi.org/10.1029/2021JG006348 Sharov A. and Denisov D. 2021. Algae of lakes in the European North of Russia. In: O.S. Pokrovsky, Y.V. Bespalaya, L.S. Shirokova and T.Ya. Vorobyeva (Eds). Lake water: Properties and uses (Case studies of hydrochemistry and hydrobiology of lakes in Northwest Russia). Nova Science Publishers, New York: 153–190. Sharov A.N., Nikulina V.N. and Maximov A.A. 2019. Phytoplankton of a subarctic lake under climatic variability. Regional Ecology, 2(56): 51–56. [In Russian]. https://doi.org/10.30694/1026-5600-2019-2-51-56 Solomon C.T., Jones S.E., Weidel B.C., Buffam I., Fork M.L., Karlsson J., Larsen S., Lennon J.T., Read J.S., Sadro S. and Saros J.E. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: Current knowledge and future challenges. Ecosystems, 18(3): 376–389. https://doi.org/10.1007/s10021-015-9848-y Straile D. and Stenseth N.C. 2007. The North Atlantic Oscillation and ecology: links between historical time-series, and lessons regarding future climate warming. Climate Research, 34(3): 259–262. https://doi.org/10.3354/cr00702 Suarez E.L., Tiffay M.-C., Kalinkina N., Chekryzheva T., Sharov A., Tekanova E., Syarki M., Zdorovennov R.E., Makarova E., Mantzouki E., Venail P. and Ibelings B.W. 2019. Diurnal variation in the convection-driven vertical distribution of phytoplankton under ice and after ice-off in the large Lake Onego (Russia). Inland Waters, 9(2): 200–212. https://doi.org/10.1080/20442041.2018.1559582 Symon C., Arris L. and Heal B. (Eds). 2005. ACIA. Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, 1042 p. Vallentyne J.R. 1969. Definition of a limnologist. Limnology and Oceanography, 14(5): 815–815. https://doi.org/10.4319/lo.1969.14.5.0815 Winberg G.G. (Ed.). 1975. Biological productivity of norther lakes. Part I. Lakes Krivoe and Krugloe. Nauka, Leningrad, 228 p. [In Russian]. Wüest A., Pasche N., Ibelings B.W., Sharma S. and Filatov N. 2019. Life under ice in Lake Onego (Russia) – an interdisciplinary winter limnology study. Inland Waters, 9(2): 125–129. https://doi.org/10.1080/20442041.2019.1634450
|
© Зоологический институт Российской академии наук
|