Презумпция морского начала в физиологии и экологии животных

В.В. Хлебович

Труды Зоологического института РАН, 2015, 319(4): 536–544   ·   https://doi.org/10.31610/trudyzin/2015.319.4.536

Полный текст  

Резюме

Зародившаяся и долго развивавшаяся в калиевой среде жизнь (протоэволюция), столкнувшись с натриевым океаном, выработала у предков животных при критической солености 5–8‰ (110–130 mM Na) эффективный калий/натриевый насос, обеспечивший биологический прогресс царства Animalia. Предложена новая схема эволюции соленостных отношений животных. Отмечается особая роль реакций поверхностных эпителиев α-пойкилоосмотиков в физиологических и экологических адаптациях животных.

Ключевые слова

протоэволюция, натриевый насос, соленостные отношения животных

Поступила в редакцию 1 сентября 2015 г.  ·  Принята в печать 20 ноября 2015 г.  ·  Опубликована 25 декабря 2015 г.

Литература

Bassler B. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Current opinion in microbiology, 2(6): 582–587. https://doi.org/10.1016/S1369-5274(99)00025-9

Boldyrev A.A. 2008. Function of Na/K pump in exitable tissues. (Review). Journal of the Siberian Federal University. Biology, 3(1): 206–225. [In Russian]. https://doi.org/10.17516/1997-1389-0265

Frolov A.O. and Kostygov A.Yu. 2013. Protozoa, protists and protoctists in the system of eukaryots. Proceedings of the Zoological Institute of the Russian Academy of Sciences. Supplement, 2: 191–201. [In Russian].

Fuchs B., Wang W., Graspeuntner S., Li Y., Insua S., Herbst E.-M., Dirksen Ph., Böhm A.-M., Hemmrich G., Sommer F., Tomislav Domazet-Loso T., Klostermeier U.C., Anton-Erxleben F., Rosenstiel Ph., Bosch Th.C.G. and Khalturin K. 2014. Regulation of polyp-to-jellyfish transition in Aurelia aurita. Current Biology, 24: 263–273. https://doi.org/10.1016/j.cub.2013.12.003

Garlov P.E. Kuzik V.V. and Polenov A.L. 2005. Evolutionary aspects of neurocrinology. In: Fundamentals of Neuroendocrinology. Elbi, Saint Petersburg: 403–417. [In Russian].

Issi I.V. and Voronin V.N. 2007. Phylum Microsporidia. In: Manual of zoology. Protista. Pt. 2. Nauka, Saint Petersburg: 994–1045. [In Russian].

Ke X., Miller L.C., Ng W.L. and Bassler B.L. 2014. CqsA-CqsS quorum-sensing signal-receptor specificity in Photobacterium angustum. Molecular Microbiology, 91(4): 821–833. https://doi.org/10.1111/mmi.12502

Khlebovich V.V. 1974. Critical salinity of biological processes. Nauka, Leningrad, 235 p. [In Russian].

Khlebovich V.V. 2005. Levels of homoiothermy and homoioosmy and probable reasons determining them. Zhurnal obshchey biologii, 66(4): 344–348. [In Russian].

Khlebovich V.V. 2007. Levels of homeostasis. Priroda, 2: 61–65. [In Russian].

Khlebovich V.V. 2012. Ecology of individual (essay of animal phenotypical adaptations). Zoological Institute of the Russian Academy of Sciences, Saint Petersburg, 143 p. [In Russian].

Khlebovich V.V. 2014а. Milestones and principles of evolution of water-salt relationships in living organisms. Biosphaera, 6(2): 170–175. [In Russian].

Khlebovich V.V. 2014b. Contours of protoevolution. Priroda, 8: 93–94. [In Russian].

Khlebovich V.V. 2015а. Critical salinity as a marker of transition from the potassium era of life development to the sodium era. Uspekhi sovremennoy biologii, 135(1): 18–20. [In Russian].

Khlebovich V.V. 2015b. Applied aspects of the concept of critical salinity. Uspekhi sovremennoy biologii, 135(3): 272–278. [In Russian].

Khlebovich V.V. and Komendantov A.Yu. 1986. The low osmotic concentration of blood as a general character of the bivalve mollusks penetrated into fresh water. Proceedings of the Zoological Institute of the Academy of Sciences of the USSR, 152: 50–56. [In Russian].

Komendantov A.Yu. and Khlebovich V.V. 1989. Uptake of the dissolved organic matter by water invertebrates related to salinity. Proceedings of the Zoological Institute of the Academy of Sciences of the USSR, 196: 22–50. [In Russian].

Labas Yu.A., Gordeyeva А.V. and Nagler L.G. 2006a. Generation of the active oxygen forms by marine invertebrates: mechanisms and possible biological role. Zhurnal evolutsionnoy biokhimii i phisiologii, 3: 201–207. [In Russian]. https://doi.org/10.1134/S0022093006030021

Labas Yu.A., Gordeyeva А.V. and Nagler L.G. 2006b. The invisible robe of naked things. Priroda, 12: 3–10. [In Russian].

Loeb M.J. 1974. Strobilation in the Сhesapeake Bay sea nettle Chrysaora quinquecirrha – III. Dissociation of the neck inducing factor from strobilating polyps. Comparative Biochemistry and Physiology, 49: 423–432. https://doi.org/10.1016/0300-9629(74)90558-1

Loeb M.J. and Hayes D.K. 1981. Strobilation in the Chesapeake Bay sea nettle Chrysaora quinquecirrha – V. Neurons and neurosecretion. Transactions of the American Microscopical Society, 100: 264. https://doi.org/10.2307/3225551

Macallum A.B. 1910. The inorganic composition of the blood in invertebrates and vertebrates and its origin. Proceedings of the Royal Society of London. Series B, 82: 602–624. https://doi.org/10.1098/rspb.1910.0054

Macallum A.B. 1926. The paletochemistry of the body fluids and tissues. Physiological Reviews, 6: 316–357. https://doi.org/10.1152/physrev.1926.6.2.316

Margelis L. 1983. Role of symbiogenesis in cell evolution. Mir, Moscow, 352 p. [In Russian].

Markov A.V. and Kulikov A.M. 2005. The origin of eukariotes: the conclusions from analysis of protein hommologes in three superregnums of living nature. Paleontologicheskiy zhurnal, 4: 3–18. [In Russian].

Mulkidjanian A.Y., Bychkov A.Yu., Dibrova D.V., Galperin M.Y. and Koonin E.V. 2012. Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings of the National Academy of Sciences, 109(14): 821–830. https://doi.org/10.1073/pnas.1117774109

Natochin Yu.V. 2005. The role of sodium ions as inсentive to cells and metazoan animal evolution. Paleontologicheskiy zhurnal, 4: 19–24. [In Russian].

Natochin Yu.V. 2006. Physico-chemical determinates of physiological evolution from protocell to man. Physiologicheskiy zhurnal, 92(1): 57–71. [In Russian].

Natochin Yu.V. 2007. Physiological evolution of animals: sodium as the key to overcome of controversies. Vestnik Rossiyskoi Akademii nauk, 77(11): 999–1010. [In Russian]. https://doi.org/10.1134/S1019331607060068

Natochin Yu.V. 2010. Evolutionary physiology on the way from “The origin of species” to origin of life. In: Charls Darwin and the modern biology. Nestor-Istoria, Saint-Petersburg: 321–337. [In Russian].

Natochin Yu.V., Ryzhenko B.N. and Galimov E.M. 2008. Role of salt composition (K/Na) of water media in biological evolution. In: Problems of biosphaera origin and evolution. Librocom, Мoscow: 404–408. [In Russian].

Ng W.L. and Bassler B.L. 2009. Bacterial quorum-sensing network architectures. Annual Reviews in Genetics, 43: 197–222. https://doi.org/10.1146/annurev-genet-102108-134304

Polenov A.L. and Kulakovsky E.E. 1993. The origin and evolution of neuroendocrine cells and neurohumoral regulation in Metazoa. In: Neuroendocrinology. Book 1. Part 1. Nauka, Saint Petersburg: 13–31. [In Russian].

Sáez A., Lozano E. and Zaldívar-Riverón A. 2009. Evolutionary history of the Na, K-ATPase and their osmoregulatory role. Genetica, 136(3): 479–490. https://doi.org/10.1007/s10709-009-9356-0

Skou J. 1957. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta, 23: 394–401. https://doi.org/10.1016/0006-3002(57)90343-8

Spirin A.S. 2001. Biosynthesis of proteins, RNA-world and the origin of life. Vestnik Rossiiskoi Academii Nauk, 71(4): 320–328. [In Russian].

Spirin A.S. 2003. Ribonucleic acids as the central link of living matter. Vestnik Rossiiskoi Academii Nauk, 73(3): 117–127. [In Russian].

Spirin A.S. 2005. The origin, possible forms of existence and size of the primitive individuals. Paleontologicheskiy zhurnal, 4: 25–32. [In Russian].

 

© Зоологический институт Российской академии наук
Последнее изменение: 23 сентября 2024 г.