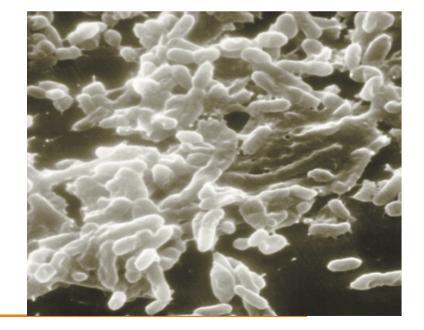


Experts in Chem-Feed and Water Treatment

Ozone as effective biocide for microbiological and antifouling control water system


Periphyton and fouling conference St. Petersburg, 23.october 2008

Wolfgang Matheis **ProMinent ProMaqua GmbH** Maaßstraße 32/1, D-69123 Heidelberg Tel. +49 (6221) 6489-0, Fax. +49 (6221) 6489-400 w.matheis@promaqua.com www.promaqua.com

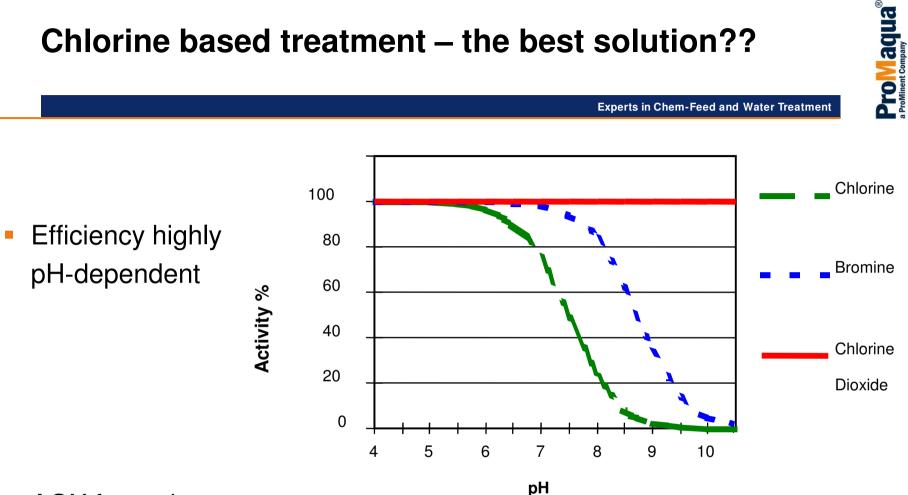
Biofilm - a universal problem

- **Experts in Chem-Feed and Water Treatment**
- slimy coatings of microorganism and extracellular compounds in pipelines, tanks and heat exchanger surface
- pathogenic germs (e.g. E. coli or Legionella) are living in biofilms
- biofilm reduces the efficiency of heat exchangers
- biofilm causes corrosion in metal surfaces MIC
- biofilms are extremely resistant against most disinfectants
- chlorine dioxide and ozone are the only suitable disinfectants, able to kill and to remove biofilms in water pipes and tanks

Microbiological control in water systems

- mechanical methods
 - manual cleaning of piping
- chemical methods
 - oxidizing chemicals
 - chlorine, chloramine
 - chlorine dioxide
 - ozone, peroxides and other oxidants
 - organic biocides and other chemicals

Comparison of chemical disinfectants



	chlorine	CIO ₂	ozone
disinfection capacity	medium	strong	strongest
Oxidation potential [V]	1,49	0,95	2,07
dependence from pH-value	extreme	none	low
depot effect	hours	days	minutes
disinfection by-products	THM, AOX and other chlorinated organics	chlorite	evt. bromate
resources	Cl ₂ -gas, hypo-chlorite or electrolysis	HCI & NaClO ₂	electr. energy, air or oxygen

Comparison of Disinfectants

Micro- organism	Reduction Rate	Chlorine	Chlorine Dioxide	Ozone
	(%)	c x t (ppm x min)	c x t (ppm x min)	c x t (ppm x min)
Crypto- sporidium parvum	99.9	1440	> 120	> 5
Giardia Iamblia	99.9	104-122	23	1.4
Escherichia Coli	> 99.99	3-4	1.2	0.012 - 0.4

Chlorine based treatment – the best solution??

- AOX formation
- Contribution to inorganic load
- High chlorine/chloride concentrations promote corrosion in metals
- High chlorine level necessary due to bioresitance
- Removal of residual chlorine before discharge

- to effect mortality of adult mussels
 - high disinfectant's concentration are required
 - deposits of dead mussels are still present
- to effect mortality of free swimming veligers
 - high disinfectant's concentration are required
 - cleaned piping will be protected against re-infestation
- to effect settling-inactivation of veligers
 - Iow disinfectant's concentration are required
 - cleaned piping will be protected against re-infestation
 - best ecological valuation

Physical Properties Ozone O₃

ozone is the strongest oxidant used in water treatment
 E⁰ = 2.07 V

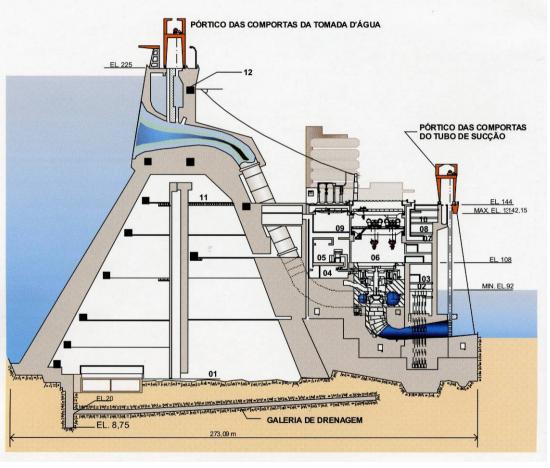
ProMaqua[®]

 δ^+

- solubility depending on temperature and ozone concentration in the gas phase
- has to be generated on site due to short half life time
- reacts without residuals resulting in O₂
- ozone works without formation of undesired byproducts
 - no formation of THM
 - no formation of AOX

Hydroelectric Power Plant Itaipu

- bi-national project between Brazil and Paraguay
 - 1.350 km² surface reservoir, drainage area of 820.000 km²
 - 20 Francis-turbines with following data, each:
 - 715 MW capacity
 - 125 m altitude difference
 - 660 m³/s water flow



Profile of the Dam

- bypass with 2.253 m³/h
 for use as cooling water
 - stainless steel cartridge filter, mesh size 2 mm
 - distribution on 11 blocks of heat exchangers

Problems caused by mussel growth

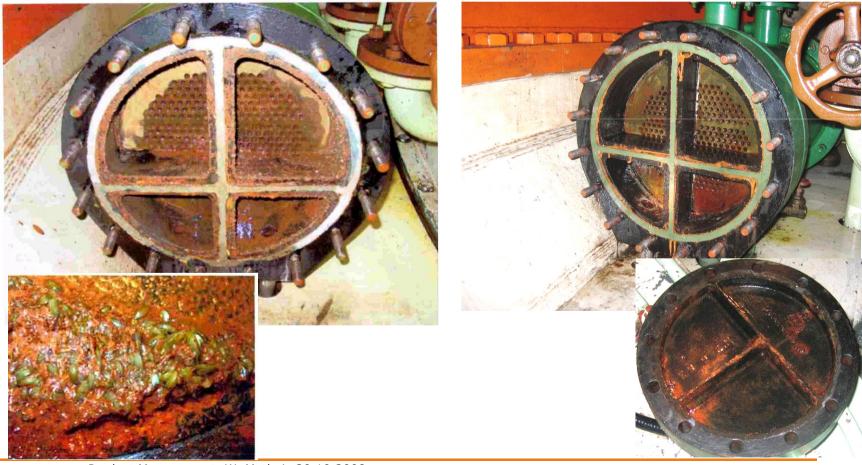
- growth of Limnoperna fortunei (Golden Mussel) on every wetted surface, even at 12,5 bar
 - blocked central filter
 - blocked heat exchangers
- frequently interruptions of the generators to clean filter and heat exchangers

Product Management, W. Matheis 20.10.2008

ProMinent Company **Treatment of One Cooling Circuit with Ozone Experts in Chem-Feed and Water Treatment** heat exchanger block ozonator OZVa 4 sample valves for monitoring N1 ozone output ozone Ode N2 coupon for N3 monitoring corrosion booster N4 pump 8 flow meter venturi bio boxes for monitoring mussel growth flow meter 4,2 m³/h 34 m³/h

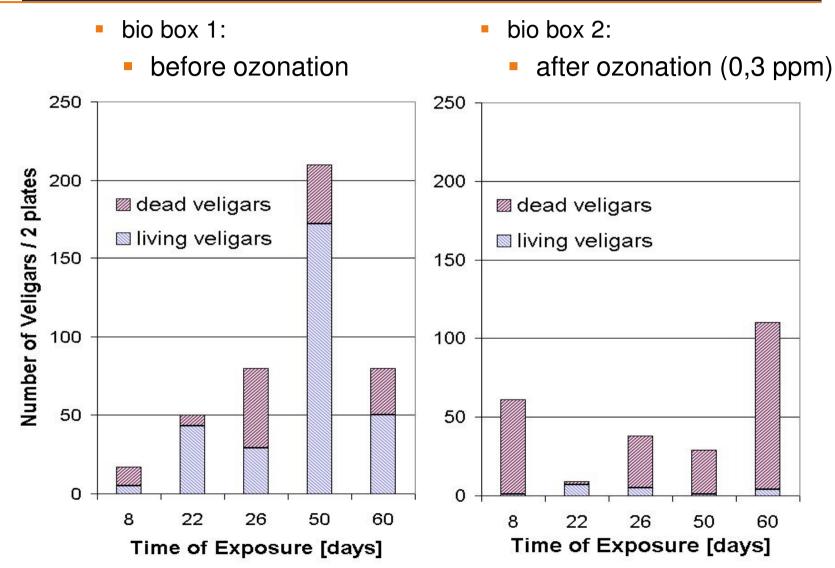
Determination of Ozone dose

- ozonation
 - dosage rates: 0.1, 0.2, 0.3, or 0.4 ppm (calculated on 34 m³/h)
- measurement of the ozone
 - ozone detectable directly after the dosing point
 - no ozone detectable at the heat exchangers
- visual check of the heat exchangers after 3 month
- bio boxes
 - microscopic determination of plastic plates to identify dead and living veligers
 - 5 pairs of plates allow 5 tests / period
- corrosion coupon test at the heat exchanger
 - incubation period: 87 days



Results: Visual Control of the Heat Exchanger

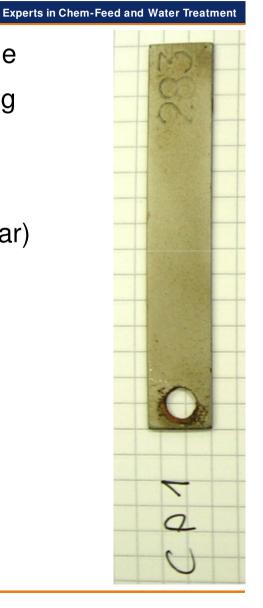
 3 month after last cleaning without ozonation 3 month after last cleaning with ozonation


Experts in Chem-Feed and Water Treatment

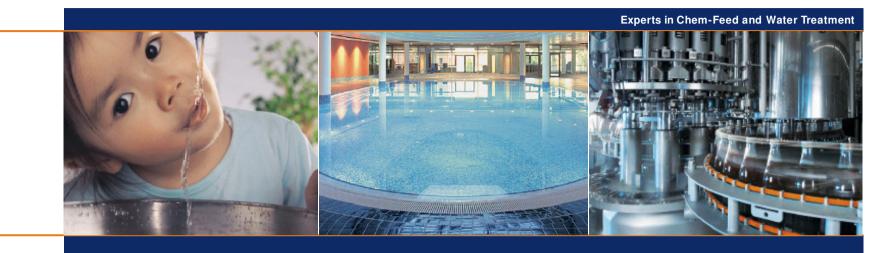
Product Management, W. Matheis 20.10.2008

Results: Bio Boxes

Experts in Chem-Feed and Water Treatment


Product Management, W. Matheis 20.10.2008

Results: Corrosion Coupon


- no corrosive effect of the ozonation detectable
 - determination of general corrosion following international standard ASTM D2688-94
 - incubation period: 87 days
 - corrosion rate: 0,3 mpy (mpy = mils per year)
 - 0 to 2 mpy = excellent
 - 3 to 5 mpy = good
 - 6 to 10 mpy = acceptable
 - > 10 mpy = unacceptable

- low dosage of ozone in natural river water avoids mussel growth in cooling water circuits
- ozonation is a very ecological water treatment
 - no precursor chemicals required (oxygen or ambient air)
 - reaction in the water back to oxygen
- ozonation is a very economical water treatment

Promagua[®]

Thank you for your attention

Any question?