

Principle of a long-line

A mussel farm is like an artificiell hard bottom

On-going studies on long-line farming

X = test sites

The first mussel farm in Kalmarsund

Ljungsnäs, June 2006

Kalmarsund after 14 months

Biomass just over one year was 4 kg m⁻¹ mussel-band, or 16 kg m⁻¹ longline.

Size after 14 months

Torbjörn Engman at Seglinge Forell inspects his mussel farm, which purpose is to compensate for the nutrient emission from the fish farm.

Mussel farming at Kumlinge, east Åland archipelago

- Biomass after one year was 1 kg m⁻¹ mussel-band, or 8 kg m⁻¹ longline.
- Biomass after two years was over 2 kg m⁻¹ mussel-band, or ca 20 kg m⁻¹ longline.

The Agro-Aqua recycling

The Agro-Aqua recycling in a marine area

The Agro-Aqua recycling, in the Baltic

The Agro-Aqua recycling, in the Baltic

Nutrient trading as a part of coastal zone management

Lysekil – the first Swedish case of trading a nutrient discharge

European Community sewage treatment demand:
10 000 p.e.

70% nitrogen removal

Annual cost: 230 000 Euro

Lysekil sewage treatment plant. (70 % N removal)

Lysekil first in Sweden trading a nitrogen discharge

Discharge 39 ton N

100 % (!) nitrogen removal in Lysekil

Harvest 39 ton?

Mussel farming 3 500 ton

Annual cost: 155 000 Euro

Bonus: 2,7 ton phosphorus

What shall we do with thousands tons of small mussels?

Free choice of feed

Steamed mussel meat

Standard feed

Control, 10 % mussel meat and free choice

Large scale and long term studies at Swedish Agro. Univ.

The mussel reminder used as a fertilizer

Composting mussels with straw

Why mussel farming to combat eutrophication:

- Recirculates nutrients via phytoplankton from sea to land
- Environmentally friendly
- Cost effective compared to other measures
- **X** Especially suitable for diffuse emissions
- Flexible and easy to remove
- Provides coastal jobs
- Long-line mussel farming has a potential in the Baltic
- × Produces organic feedstuff and fertilizer

Почему марикультуру моллюсков можно рекомендовать для борьбы с эвтрофикацией?

- ▶Осуществляет через фитопланктон перемещение биогенов из моря на сушу
- >Экологически безопасна
- **▶**Особенно подходит для районов, где происходит диффузная эмиссия биогенов
- ▶Модули установок гибкие, мобильные, их легко удалять
- ▶Способствует созданию новых рабочих мест в прибрежных районах
- ▶В данной модификации имеет потенциал для Балтийского региона
- Источник экологически чистых кормов и удобрений

The Baltic (Åland):

First year

60 ton mussel biomass after one year.

Estimated content: 2.4 ton C, 0.5 ton N and 36 kg P

Second year

160 ton mussel biomass after two years.

Estimated content: 6.4 ton C, 1.3 ton N and 100 kg P

One hectar of mussel farm utilises the primary phytoplankton production from 7.5 ha of sea area.

The Baltic (Kalmarsund):

130 ton mussels after one year.
Estimated content: 5.1 ton C, 1 ton N and 76 kg P

One hectar of mussel farm utilises the primary phytoplankton production from 16 ha of sea area.

Swedish west coast:

Up to 300 ton mussels in 12 to 18 months. Harvests: 12 ton C, 2.4 – 3.6 ton N and 180 – 240 kg P

One hectar of mussel farm utilises the primary phytoplankton production from 25 ha of sea area.

Estimated marginals costs using mussel farming for N and P harvest

	SEK / kg N	SEK / kg P
Kattegat	0 - 322	0 - 3220
Öresund	0 - 365	0 - 3650
Southern Baltic	64 - 336	640 - 3360
Northern Baltic	134 - 768	1340 - 7680

(From Gren et al., manuscript)