Способы использования кокцинеллид

В. П. СЕМЬЯНОВ, кандидат биологических наук

Для борьбы с сосущими вредителями кокцинеллид начали использовать давно. По данным Х. Суитмена (1964), из 80 случаев успешной биологической борьбы в 17 результаты были получены от совместного использования кокцинеллид и паразитов, а в 10 — только кокцинеллид. Достаточно напомнить о феноменальном успехе применения родолии и криптолемуса для борьбы с вредителями во многих странах мира.

Рассмотрим более подробно различные способы использования кокцинел-

лид.

Интродукция и акклиматизация. Этот способ был подробно описан на страницах журнала «Защита растений» (1974, № 5), поэтому остановимся лишь на результатах, полученных в последнее время. Еще в 1974 г. нами была высказана мысль о целесообразности ввоза в СССР и оценки коровок рода Сусюпеда в борьбе с тлями в защищенном грунте. К настоящему времени кубинская популяция С. sanguinea завезена в СССР из Франции и испытывается в Ленинграде и Кишиневе для борьбы с тлями в теплицах.

В 1973 г. в Аджарию из Индии был интродуцирован Chilocorus bijugus, оказавшийся эффективным хищником японской палочковидной, олеандровой, калифорнийской и желтой цитрусовой щитовок (Н. Ф. Чануквадзе, 1976). Тогда же из Индии была завезена в Аджарию для борьбы с цитрусовой белокрылкой Catana parcesetosa. По данным Батумской биолаборатории (А. И. Антадзе, Т. В. Тимофеева, 1976), коровка хорошо размножается в естественных условиях и активно уничтожает белокрылку в цитрусовых насаждениях, на японской хурме и лигуструме.

Ряд успешных работ осуществлен и за рубежом. Еще в 1971 г. была начата интродукция в Нигерию из Ирана Chilocorus bipustulatus var. iranensis для борьбы с пальмовой щитовкой. По последним данным (I. C. Tourner et. al., 1976), во всех местах, где хищник удержался после первичного выпуска, уровень заражения пальм щитовкой значительно снизился. На Гавайских островах одна из основных цветочных и декоративных культур — Plumperia sp. сильно повреждалась ложнощитовкой Coccus viridis. В результате ввоза из Австралии хищных кокцинеллид Азуа orbigera, Cryptolaemus montrouzieri и Orous chalybeus вредоносность ложнощитовки была сведена до хозяйственно неощутимого уровня (V. Chara-

nasri, T. Nishida, 1975) Интродукция из Австралии хищных кокцинеллид Нагmonia confarmis и Diomus pumilio вызвала заметное сокращение численности листоблошки Psylla uncatoides, вредящей акации (I. R. Leeper, I. W. Ir. Beardsley, 1977). В Новую Зеландию для борьбы с тлей Acyrthosiphon kondoi из Пакистана была завезена коровка Harmonia dimidiata, оказавшаяся более эффективной, чем интродуцированная около 100 лет назад Coccinella undecimpunctata (W. P. Thomas, 1977). Следует отметить, что интерес к работам по интродукции кокцинеллид не ослабевает и исследования в этом направлении ведутся весьма интенсивно во многих странах мира.

Сбор в местах скопления на зимовку с последующим выпуском. Этот способ зародился в конце XIX — начале XX веков в Калифорнии, где на бахчах сильно вредила тля Aphis gossypii. В горах Сьерра-Невада были известны громадные скопления зимующих коровок Hippodamia convergens. Калифорнийским инсектарием был организован массовый сбор этих жуков. Насекомых упаковывали в ящики и хранили до весны. После появления тлей на полях коровок рассылали фермерам. Насекомых выпускали на больших площадях, и почти всегда результат оказывался хорошим. Однако все же известны случаи, когда, несмотря на обилие тлей, жуки разлетались с полей. О масштабах работы с гипподамией можно судить по следующим цифрам: в 1912 г. калифорнийский инсектарий разослал фермерам около 40 млн. особей.

С появлением эффективных пестицидов выпуск коровок был прекращен. Однако в последние два-три десятилетия интерес к этим работам вновь возродился. В настоящее время в США в коммерческих масштабах ежегодно выпускается на поля около 700 млн. особей гипподамии (R. E. Stinner, 1977).

В нашей стране еще в 1937 г. В. Ф. Волков и в 1941 г. Г. Г. Бальцер собирали семиточечную коровку в местах зимовки и выпускали на свекловичные поля на Украине. Результаты получены очень хорошие, но война прервала эти работы, и они, к сожалению, до сих пор не возобновлены. Примерно в то же время в Средней Азии В. В. Яхонтов начал работать с двумя видами местных кокцинеллид — Вrumus octosignatus и Semidalia undecimnotata — на хлопчатнике и люцерне. Но и эти работы не получили дальнейшего развития.

Массовое размножение в лаборато-

рии с последующим выпуском в природу. Этот способ применяется главным образом для размножения интродуцированных видов с последующим использованием либо путем сезонной колонизации, либо методом «наводнения». Впервые была применена сезонная колонизация криптолемуса против мучнистых червецов в северных районах Калифорнии, где жук вымерзал зимой. В настоящее время в США криптолемуса используют методом «наводнения». Ежегодно его применяют около 71 млн. экземпляров. Кроме криптолемуса, в США используют Stethorus picipes против клеща Oligonychus punicae (R. E. Stinner, 1977), сильно вредящего на авокадо. Выпуск 500—1000 особей коровок на дерево позволяет значительно снизить численность вредителя.

Криптолемуса для борьбы с мучнистыми червецами применяют и у нас на Черноморском побережье Кавказа. Однако в годы с суровыми зимами жук вымерзает и его приходится периодически выпускать в природу, размножив в лаборатории. Раньше криптолемуса разводили на мучнистых червецах, что было трудоемко и дорого, сейчас же с успехом применяют искусственные среды. Используется главным образом метод «наводнения» в очагах вредителя. Эффект выпусков, по данным Лазаревской опытной станции ВИЗР, составляет свыше 100 руб/га. На Лазаревской станции занимаются и разведением семиточечной коровки на искусственных средах. Работы эти, по нашему мнению, интересны лишь в научном отношении, а для практики бесперспективны, ибо семиточечная коровка — один из массовых видов нуждается не в искусственном размножении, а в разработке способов охраны и повышения полезной роли.

Устройство искусственных мест зимовки. Этот способ предполагает создание таких мест, где обеспечивались бы оптимальные микроклиматические условия для жуков в зимнее время. Работы эти были начаты еще в довоенное время В. В. Яхонтовым: создавались искусственные зимовья для брумуса и семиадалии. Это позволило бы упростить сбор жуков и последующий выпуск их на поля. Однако остались незаконченными. Наши наблюдения в Таджикистане показали, что в специально сложенных кучах камней (высотой до 1 м) на гребне хребта (1700-1800 м) охотно собираются на зимовку брумус и адония изменчивая. Интересны были бы и аналогичные исследования немигрирующих видов из родов хилокорус и адалия.

Внутриареальное переселение в целях гибридизации местных популяций с географически отдаленными. Эти работы были начаты В. В. Яхонтовым со стеторусом и семиточечной коровкой. В лабораторных условиях особи из Ташкента скрещивались с особями из Алма-Аты, Баку и Бухары. У гибридов первого поколения семиточечной коровки плодовитость повышалась на 21—136%, у стеторуса — на 10—43%. Прожорливость семиточечной коровки возрастала на 7—47%, стеторуса — на 2,2—21,8%. Гетерозис в различной степени проявлялся до третьего-четвертого поколений, а затем затухал.

Этот способ, несмотря на кажущуюся простоту и эффективность, обладает целым рядом недостатков. Самый существенный — опасность завоза паразитов и патогенов кокцинеллид: браконида динокампуса, ноземы, грегарины, грибов и вирусов, развивающихся на имаго. Одно лишь это делает способ не только нецелесообразным, но и в конечном счете вредным. Следует отметить также и невысокий генетический уровень исследований.

Использование кокцинеллид в теплицах. Возможность применения кокцинеллид в закрытом грунте из-за их высокой прожорливости и плодовитости представляется весьма перспективной, однако решение этой проблемы связано с целым рядом трудностей, преодолеть которые пока не удается. Использование взрослых жуков затруднено тем, что гигротермические условия в теплицах не соответствуют экологическому стандарту местных видов. Наиболее целесообразны поэтому интродуцированные виды, естественные условия обитания которых сходны с условиями в теплицах (мы уже упоминали об интродукции циклонеды для этих целей). Взрослые жуки кокцинеллид обладают отрицательным гео- и положительным фототаксисом и концентрируются в верхних частях теплиц. Кроме того, у мигрирующих видов на определенном этапе жуки стремятся покинуть теплицу. И, наконец, самки коровок откладывают яйца на растениях при сравнительно высоких уровнях плотности жертв, а при снижении их покидают растения.

Использование личинок кокцинеллид лимитируется отсутствием способов массового разведения и механизированного выпуска. Применение яиц могло бы оказаться наиболее приемлемым с экономической точки зрения, но также затруднено из-за отсутствия способов механизированного сбора и распространения яиц (их хорион очень нежный и легко повреждается).

Тем не менее попытки использовать кокцинеллид в теплицах предпринимеются во многих странах. В Финляндии, например, пытаются применять семиточечную и двухточечную коровок против персиковой тли на хризантемах и перцах и против розанной тли на розах (М. Hämäläinen, 1977). Уже через две недели после выпуска двухточечной коровки на перце (при соот-

ношении одна личинка 1-го возраста на 5-10 особей персиковой тли) и семиточчной коровки на хризантемах (при соотношении одна личинка 1-го возраста на 50 особей) в небольших теплицах удалось получить хорошие результаты. Применение же имаго оказалось малоэффективным. Создать размножающуюся самостоятельно популяцию кокцинеллид в теплицах также не удалось. Применение личинок на розах оказалось неудачным, по мнению исследователей, из-за неспособности личинок 1-2-го возрастов оставаться на рестениях после выпуска и искать тлей. По нашему мнению, неудача объясняется какими-то другими причинами, ибо нам неоднократно приходилось наблюдать массовое размножение этих двух видов коровок на розах в природных условиях.

В США получены хорошие результаты при выпуске в теплицы личинок 3-го возраста циклонеды против Aphis gossypii на огурцах при соотношении хищник — жертва 1:20 (R. E. Stinner, 1977).

У нас в стране ведутся исследования по применению в теплицах циклонеды и дальневосточной коровки хармонии. Однако эти работы еще не вышли за рамки лабораторных и полупроизводственных экспериментов.

Очевидно, что успеха при использовании кокцинеллид в теплицах можно будет добиться в том случае, если применяемый вид станет элементом тепличного «агробиоценоза» и сможет размножаться самостоятельно в течение вегетационного сезона без дополнительных выпусков. Следовательно, необходимо искать такие виды, которые имели бы сниженный фототаксис, не относились бы к мигрирующим и имели экологический стандарт, соответствующий гигротермическим условиям в теплицах. Можно было бы предпринять попытку интродукции в СССР для борьбы с тлями в теплицах коровок Verania discolor и Menochilus sexmaculatus из Вьетнама, где они являются одними из самых массовых и распространенных видов, а также Cheilomenes lunata и Lioadalia flavomaculata из Африки.

Разработка способов охраны и повышения полезной роли местных кокцинеллид. Это направление весьма многообразно и включает как рационализацию химического метода, так и комплекс агрохозяйственных мероприятий.

Большое значение имеет подбор препаратов селективного действия. К сожалению, таких пестицидов пока еще немного, в качестве примера можно назвать сайфос, пиримор, акрекс, мильбекс, тедион, кельтан и в меньшей степени — гардону и дилор. Определенное значение имеют сроки и способы обработок. Обработки желательны в период преобладания в природе относительно устойчивых фаз развития кокцинеллид (куколки, яйца) или ранней весной до выхода коровок с зимовки. Для кокцинеллид менее губительно опрыскивание, чем применение аэрозолей. Представляет интерес изучение влияния малообъемного и ультрамалообъемного опрыскивания на различные фазы развития кокцинеллид.

Отказ от сплошных и переход к выборочным обработкам, безусловно, будет способствовать сохранению кокцинеллид. Перспективно ленточное применение пестицидов, краевое, очаговое. Замена химических препаратов биологическими типа энтобактерин (безвредными для кокцинеллид) также ведет к сохранению коровок, однако применение биопрепаратов на основе гриба боверия бассиана может вызывать гибель как личинок, так и жуков.

Данных о роли агротехнических мероприятий в повышении эффективности кокцинеллид очень мало. В качестве примера можно привести лишь гиперасписа — эффективного хищника продолговатой подушечницы (Н. Л. Богданова, 1956; 1967). Было установлено, что глубокая обрезка чайного куста создает неблагоприятные условия для развития вредителя и благоприятно влияет на развитие гиперасписа, что способствует повышеню его эффективности.

Комплекс агрохозяйственных мероприятий, включающий посадку лесополос, создание живых изгородей и искусственных водоемов, посев многолетних трав и нектароносов, сохранение дикой цветущей растительности вдоль обочин дорог и канав, способствует сохранению кокцинеллид, обогащает их видовой состав и повышает эффективность. К сожалению, какиелибо экспериментальные данные, подтверждающие эти положения, отсутствуют, и наши рекомендации основаны на соображениях самого общего порядка. Правда, имеется указание о том, что на полях, граничащих с лесом, численность тлей ниже, а кокцинеллид выше, чем на полях, удаленных от лесных массивов (В. Galecka, 1962).

Таким образом, разработка способов охраны и повышения полезной роли местных кокцинеллид — весьма перспективное и многообещающее направление, заслуживающее всемер-

ного внимания. ЗИН АН СССР