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INTRODUCTION

The Mexican bean beetle (MBB), Epilachna varivestis MULSANT, has long been
an important pest of snap beans and lima beans (Phaseolus spp.), and in recent years
its importance as a pest of soybeans (Glycine max (L.) MERRILL) has increased,
especially in the Southeastern U.S.A. and along the eastern coast as far north as
Maryland and Delaware. This pest is essentially free of naturally-occurring parasitoids
and diseases. All larval stages and adults cause defoliation of host plants. Although
several species of arthropod predators feed on the eggs and larvae of MBB (WADDILL
and SHEPARD 1974; WADDILL and SHEPARD 1975), predation is often ineffective in
preventing economic loss by the pest.

A computer simulation model of populations of MBB in soybeans (MEXSIM) has
been developed and has predictive value in terms of identifying peak infestations
(WADDILL et al.1976). Certain biological information, such as MBB growth, develop-
ment, overwintering, etc. in the soybean ecosystem, has been provided (BERNHARDT
and SHEPARD 1978a, b) in order to refine the model.

Releases of the imported parasitoid, Pediobius foveolatus (CRAWFORD) near the
coastal areas of Maryland, have shown promise for suppression of MBB populations
(STEVENS et al. 19753), but no quantitative information is available relative to optimum
numbers of parasitoids needed for reduction of MBB population density to subeconomic
levels. This information is important because P. foveolatus does not overwinter in the
U.S. A. Thus laboratory colonies of both MBB and P. foveolatus must be maintained
during winter months and numbers of the parasitoid increased for eventual “field
releases in the spring. Therefore, it is desirable to optimize the numbers of parasitoids
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to be released in order to help insure successful biological control yet minimize time
and expense involved in laboratory rearing of the insect cultures.

The importance of quantitative information about numerical relationships between
parasitoids and prey at various density levels in order to achieve practical biological
control has been emphasized by KNIPLING (1971). Many of the inconclusive or unsuc-
cessful attempts at controlling pests by parasitoid releases often stem from lack of
understanding these numerical relationships. Results from theoretical models of the
parasitoid T7ichogramma released for control of the sugarcane borer, illustrated the
importance of changes in the dynamics of parasitoid-prey interaction at different prey
densities (KNIPLING, 1971).

This present study was conducted to develop a stochastic model of the interaction
between the parasitoid P. foveolatus and the MBB, in the soybean ecosystem. The
ultimate goal of using the model is to predict the response of populations of MBB
when P. foveolatus are released into fields at various parasitoid: host ratios.

METHODS AND MATERIALS

Basic data inputs were obtained from reports of the biology of P. foveolatus
(LALL, 1961; SHEPARD and GALE, 1977; GALE and SHEPARD, 1978; STEVENS ef al.,
1975b) and MBB (BERNHARDT and SHEPARD 1978a, b; WADDILL ef al., 1976). The
model originally selected was a stochastic bivariate birth and death model for preda-
tor-prey interaction proposed by CHIANG (1954). Basically the model depicts the two
population densities (predator and prey) as coordinates of an ordered pair which
move along lattice points in the first quadrant of the plane, including the axes, as
the population densities change through time.

One of the assumptions made during construction of the model was that within
a small change in time the maximum change in the two populations was either one
birth or one death but not both. In spite of the fact that adult parsitoids emerge in
very rapid succession from the parasitized larva, by selecting a sufficiently small
change in time, we believe that this assumption will hold. The model also assumes
that the growth of the two interacting populations depends on the frequency of
encounters between the two species.

Two further assumptions of the model were less intuitively obvious, although
there was no known evidence to dispute them. For example, in the model the
frequency of encounters between the two species was taken to be a function of the
population sizes of both species. This function was assumed by CHIANG (1954) to be
proportional to the product of the two population sizes at time £. This assumption
of proportionality to the product has been frequently made in the predator-prey models,
notably in the LOTKA-VOLTERRA equations for a deterministic predator-prey model
(GoEeL et al, 1971). Also, the assumption was made that the birth-death process
satisfies the Markov property (BHARUCHA-REID, 1960) which means that given the
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present population sizes, the past population sizes were not needed in order to predict
future populations sizes.

From these assumptions, a differential-difference equation was derived for the
joint probability distribution of the two pupulation sizes (see Appendix A). An
analytic solution to this differential-difference equation would provide valuable infor-
mation about the probability structure of the interaction. Unfortunately, in the search for
such an analytic solution to the model, we found that this equation presents intractable
problems, and no analytic solution was known. Thus the Monte Carlo simulation approach
was decided upon as a way to examine the process and extract some results on the
effectiveness of the three parasitoid: host ratios of interest : 1:20, 1: 100, and 1 : 400.

A FORTRAN algorithm was designed to simulate a random walk in the first
quadrant where Y is the number of parasitoids and X is a measure of the beetle
population as explained below. In general the parasitoids prefer fourth instar MBB,
so that the two species interact only when the beetle reaches the fourth larval stage.
Thus a “beetle” in this simulation model was a fourth instar,a pupa, or an adult,
and X=the number of adult MBB. Using the equations given in assumptions of the
model and data obtained from the literature plus unpublished field and laboratory
experiments, the algorithm computes the probabilities of each of the possible transi-
tions. Then on the basis of a generated random number, the algorithm determines the
direction of the transition, increments or decrements the appropriate population
accordingly, and repeats the process for any desired length of time.

Dufing the attempted implementation of this algorithm, a major limitation was
found in the direct application of CHIANG’s model. The probability of the birth of a
beetle in CHIANG’s model would be 41X 4 where Ai=the birth rate of the beetles, ¥=
the total number of beetles at time #, and 4f{=the increments of time. However, in
this situation, the probability of the birth of a beetle should be Aidf multiplied by
the number of mature beetles, since the younger ones cannot reproduce. Also, the two
probabilities involving the interaction of the two species, the probability of the birth
of a parasitoid and the probability of the death of a beetle, are dependent on the
number of fourth instars, an unknown quantity using this initial model. Thus it was
apparent that a representative model of this situation must keep track of the number
of beetles in each stage under consideration.

In order to account for the number of beetles in each of the last four stages
of development, CHIANG’s basic model was expanded to a random walk in five dimen-
sions. Each dimension represents one of the five populations. Thus letting W=the
number of parasitoids, L=the number of fourth-stage MBB, P=the number of MBB
pupae, PA=number of preoviposition adult MBB, and MA=the number of mature
adult MBB, the state of the system at any time can be represented by the point
(W, L, P, PA, MA) in five-space. The equations for the transition probabilities are
the straightforward extensions of CHIANG’s model.
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A FORTRAN algorithm was written to simulate the interaction between MBB
and P. foveolatus over a period of ten weeks. Because sample beetle counts from a
soybean field taken on July 9 were available, the ten weeks of the simulation
algorithm began on July 9. In the simulation two releases of parasitoids were made.
The first release was made on July 9, and the second release of an equal number was
made on July 23. In the simulation algorithm the unit of time was one week. A
listing of the simulation algorithm is available from the authors.

The simulation was scaled so as to represent an area of 192 square meters
(approximately 225 square yards) of a soybean field. This area was selected in order
to allow for the initial release of the parasitoids for the 1:400 ratio while keeping
the population sizes small enough to avoid excessive use of computer time.

On the basis of the means of nine samples of four feet of row observed in a
soybean field on July 9, it was expected that the initial beetle population in the
simulated area would be approximately 1205 beetles distributed as follows: 568 fourth
instars, 396 pupae, 12 preoviposition adults, and 229 mature adults. This implied that
in order to look at three parasitoid : beetle ratios of approximately 1:20, 1:100, 1:
400, the initial number of parasitoids should be 60, 12, and 3 respectively.

The algorithm itsef begins by reading in the initial state of the system. Given
this initial state, the transition probabilities are calculated using data provided from
field samples taken near Sumter, South Carolina as discussed below.

A “birth” in one of the four beetle populations means that a beetle has entered a
new stage in his life cycle. Likewise, a “death” means that a beetle has left that
stage.

Let P1==P (the birth of fourth stage MBB)
P2-=P (the death of a fourth stage MBB)
P3=P (the death of a MBB pupa)
=P (the birth of a preoviposition MBB adult)
P4=P (the death of a preoviposition MBB adult)
=P (the birth of a mature MBB adult)
P5=P (the death of a mature MBB adult)
P6=P (the birth of a parasitoid)
P7=P (the death of a parasitoid)
P8=P (no change in the system)
Note that the death of a fourth instar may be due to the formation of a pupa or to
the instar’s being parasitized. Then:
Pl=x (MA)/s=21.T(MA)/s
where Zi=the birth rate of the fourth instars
and s=P1+ P2+ P3+ P4+ P5+ P6+ P7
P2=pm (LY(W)/s=L*W/(1.00286 L—0.50143 NOPARS)s
where z1=the death rate of the fourth instars
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and NOPARS=min (6.65 W, L)
P3:=ps P/s=1.42276 (P)/s
where uz=the death rate of the pupae
P4=p; (PA)/s=0.4375 (PA) /s
where us;=the death rate of the preoviposition adults
P5==ps (MA)s=0.219436 (M A)/s
where gs=the death rate of the mature adults
P6:=4s (W) (L)/s=30 (NOPARS)/s
where As=the birth rate of the wasps
P7=ps W/s=0.5833 (W)/s
where us=the death rate of the wasps
For detailed computation of the above equations see Appendix B.

In order to make efficient use of computer time, an event-paced simulation was
used in which P8=0 and 4t{=—1log (R)/s; where R is a random number between zero
and one. For the actual simulation runs, 4f was set equal to its expected value, 1/s
at each iteration, as test runs using each showed no significant difference in the
results.

Some consideration of the biological situation at hand caused an adjustment in the
algorithm. As noted earlier, during each season the process of interest must undergo
an initialization period. The newly released P. foveolatus can immediately lay eggs.
However, the subsequent generation of adults will not emerge from the parasitized
MBB for about 15 days under field conditions. Therefore, the probability of births
resulting from newly released wasps must remain zero for 15 days. Hence, a delay
mechanism was coded into the model which prohibits births from the wasps released
on July 9 until July 24 and prohibits births from the wasps released on July 23 until
August 7.

Once the transition probabilities were calculated, a random number R between
zero and one was generated using the IBM WATFIV version of RANDU. The interval
[0,1] was partitioned so that if R<P1 the event associated with P1 was made to
occur, if P1<<R<CP1-+ P2 the event associated with P2 occurred, if P1+P2<<R<Pl+
P2+ P3 the event associated with P3 occurred, etc. Whenever a fourth instar dies, a
decision must be made as to whether the larva becomes parasitized or pupates. The
decision was made by finding the probability that the larva was parasitized, generating
another random number, and dividing the [0, 1] interval into two segments in a similar
manner as with the transition probabilities.

In order to provide a random seed to RANDU for each new simulation, the
subroutine FTIME, which returns the time of day in seconds, was called at the
beginning of the algorithm. This time was manipulated to provide a seed that was
between five and seven digits long and that ended in an odd number since these are
IBM’s specifications for a good seed for RANDU.
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Each simulation run outputs the state of the system at the end of each of the
ten weeks. In addition, the total number of beetles at the end of each week and the
sum of all the mummies produced during each week were output.

In order to analyze the results of the simulation, the means and standard deviations
of the numbers of parasitoids, fourth stage MBB, preoviposition MBB adults, and
mature adults, as well as total MBB were computed week by week.

Since the underlying distributions of these population sizes are unknown, CHEBY-
SHEV’s Inequality was used to find confidence regions for the behavior of the system.
Since CHEBYSHEV’s Inequality was general enough to disregard the form of the
distribution, it was frequently very conservative. CHEBYSHEV’s Inequality states that
for any random variable X with finite variance the following is true:

PUX—p|>k0)<<1/k?

In other words, the probability that a variable will differ from its mean more
than & standard deviations is Iess than 1/x2. Weekly confidence intervals of at least
75% were tabulated for each of the three parasitoid: MBB ratios.

RESULTS AND DISCUSSION

Curves of the mean numbers of the four stages of the beetles, of the total beetles,
and of the parasitoids for each initial ratio are given in Figures 1-6.
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Fig. 1. Sinmulation of numbers of P. foveolatus per field (192m?)
with parasitoid: host ratios of 1:20, 1:100, and 1: 400.
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Fig. 4. Simulation of numbers of Mexican bean beetle pupae per field
(192m?) with parasitoid: host ratios of 1:20, 1:100, and 1:400.

Examination of the graphs of confidence regions of at least 75% for the para-
sitoids versus the total beetles revealed immediately a large variance in the behavior
of the thirty simulation runs for the ratio of 1:400. Consequently more simulation
runs should be performed at this ratio in order to obtain better estimates of the
means and the standard deviations. Additionally, the ratio of 1:400 resulted in much
less suppression of the beetle population than did either of the other two ratios

(Figures 1-6).
The simulations of the 1:100 ratio were rather consistent. However, this ratio

allowed beetle population size to remain consistently higher than did the ratio of 1 : 20,
in spite of the fact that after the third week the parasitoid population was larger
for ratio of 1:100. This observation suggested that a key element in the success of
the biological control was not the number of parasitoids present in later weeks but
rather the number of wasps present in the very carly weeks of the season. This was
also reflected in comparison of Figures 1 and 2.

Examination of figures 3-6 reveals that the parasitoid : host ratio of 1 : 20 consis-
tently results in smaller beetle populations. In these figures the ratios of 1:100 and
1:400 alternate in their effectiveness. These graphs compare only the means and
thus did not reflect the erratic behavior of the populations at the ratio of 1 :400.
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The behavior of the simulated model was highly dependent on the values of
several constants in the transition probability equations. Perturbation analysis of
these constants should be performed in order to determine whether small changes in
any of these constants cause great variation in the behavior of the simulated process.
For example, on the basis of initial miscalculations in the implementation of the model
that were later corrected, we suspected that the model was fairly sensitive to the
value of the birth rate of the parasitoids. A few of the data values used in forming the
constants were educated guesses or estimates based on small sample sizes. Therefore,
those constants to which the model is sensitive should be investigated, and, if
necessary, better data should be collected to determine their values.

The simulated model focused on the last four stages of the beetle. This was
reasonable because the wasp does not significantly interact with MBB in earlier stages
and the model assumes no significant changes in the beetle population due to interac-
tion with other organisms.

Finally, throughout the building of the model it was apparent that perhaps the
most important factor in the success or failure of the biological control was the size
of the initial population of beetles. In other words, the numbers of MBB available
during the fifteen day initialization period immediately after the release of the para-
sitoids. As built, the model assumes that this birth rate was the same as for MBB
reproducing during the middle of the season. However, it has been shown (BERNHARDT
and SHEPARD, 1978b) that the birth rate for MBB emerging from overwintering was
actually lower than that of succeeding generations. Hence at present, the model
probably models an extreme case. This fact implies that this model may tend to
overestimate the MBB population density. However, results from these simulations
reveal important numerical relationships relative to release programs with P. foveolatus.
Actual field data from 2 years’ research have provided results which agree, in general,
with the model’s predictions (SHEPARD and ROBINSON, 1976; SHEPARD, unpublished
data).

SUMMARY

A stochastic model of parasitism of the Mexican bean beetle, Epilachna varivestis
MULSANT, in soybeans by the imported parasitoid Pediobius foveolatus (CRAWFORD)
was developed. The model was a modification of CHIANG’S (1954) predator-prey
interaction model which depicts two population densities (parasitoid and host) as
coordinates of an ordered pair which moves along lattice points in the first quadrant
of a plane, including the axes, as the population densities change through time. At
least 30 runs were made to simulate parasitoid : host ratios 1 :20, 1:100, and 1 : 400
for a period of 10 weeks. Under conditions of these simulations, the parasitoid : host
ratio of 1:400 was not satisfactory to reduce Mexican bean beetle populations in
soybeans. Simulations using parasitoid : host ratio of 1:20 and 1 : 100 reduced bectle
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populations to acceptable levels. Results from these simulations were similar to
results obtained from two season’s data from releases of P. foveolatus to control the
Mexican bean beetle in soybean fields.
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APPENDIX A

CHIANG's predator-prey model

Part 1: The formal assumptions of the model

Let X(¢), Y(¢#) be random variables representing the population sizes of the Mexican bean

beetle and of the parasitoid, respectively, at time ¢. The following assumptions are made:

a)

b)

<)

d)

e)

f

The probability of a unit increase in the population size of MBB in the interval (¢,¢+4¢),
given that there arc exactly x MBB at time ¢ is 2,xdf+0(dt), where 2, is the birth rate of
the MBB.

The probability of a unit decrease in the population size of MBB in the interval (f,{+4¢),
given that there are exactly x MBB at time ¢ is yxydt+o0(dt), where g, is the death rate
of the MBB.

The probability of a unit increase in the population size of the parasitoid in the interval
(t,t+4¢t), given that there are exactly y parasitoids at time ¢ is Apxydt-+o(dt), where 2,
is the birth rate of the parasitoids.

The probability of a unit decrease in the population size of the parasitoids in the interval
(¢,t+4t), given that there are exactly y parasitoids at time ? is pydt+o(dt), where p,
is the death rate of the parasitoids.

The probability of a change in either population size of absolute value greater than one in
the interval (f,¢+4t) is o(dt).

The probability of no change in either population size in the interval (¢,¢+4¢), given that
there are x MBB and y parasitoids at time ¢, is 1—[A,x+ pxy +2Aexy 4 pey1dt 0 (4t).

Part 2. A differential-difference cquation for the joint probability distribution

Let Px,y(t)=P(X=x,Y=y at time ¢).

Then the assumptions of the model imply that

Px, v (1) =Pxy (t) {{1— (Aux+ g5y + 222y + p2y) Jdt +0 (48)} + Pxsr,y O [ (x+1) y 4t
+o(d)J+Pxory Y[ (x—1) dt +0 (d) ]+ Px v, () [ Aex(y—1) 4t -0 (41) ]
+Pxy (O pe(y+1) 4t +o(dt) J+0(48).

Thus

X+ nxy 42229+ 10y) Px,y (8) + 1 (x+ 1) yPx 41,y ()

+21(x_1)PX-1,Y(t) +121(}’—1)PX,Y—1 (t) +/’-2(y+1)PX,1'+1(t)
o(4t)

+ ;o

Pry @) —Pry )4t __,
4t

Then letting 4¢—0 implies that

jt Py (t) = — (ux+ ey +2gxy+29) Py () + i (24D yPrary ()

+2(x—1) Pxo,y () + 22 (y—1) Px,y 1 (8) + pro(y+1) P,y (8),
x,y=0,1,2,...

Pxy(1)=0 if x<<0, y<<0 or both.
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AprPENDIX B

Calculation of transition probabilities for the adapted model

Let W =the number of parasitoids at time £
L =the number of fourth stage MBB at time ¢
P =the number of MBB pupae at time ¢
PA =the number of preoviposition MBB adults at time ¢
MA=the number of mature MBB adults at time ¢
P(-)=the probability of the event - happening.

Then the straightforward extensions of the transition probability equations of CHianG’s model are

as follows: ’

(A “birth” in one of the four MBB populations means that a MBB has entered a new stage

in its life cycle. Likewise, a “death” means that a MBB has left that stage.)

1) Pl=P(birth of a fourth stage MBB)=2,(MA)/s, where 2,=the birth rate of the fourth stage
MBB and s=P1+P24 P34+ P4+ P54+ P64+ P7. The model assumes that the rate at which third
instars become fourth instars is the same as the rate at which the MBB eggs hatch. An
“egg” will, therefore, mean an egg that will hatch.

2= (6.2 eggs/mature female/day) (7 days/week) (1 mature female/2 mature MBB)
=21.7 eggs/week/mature MBB.

Thus P1=21.7(MA)/s.

2) P2=P(death of a fourth instar) = (L) (W)/s
where p=the death rate of the fourth instar.
m=1/average life of a fourth instar.

This average life must be weighted since the death of a fourth instar may mean its
parasitization or its becoming a pupa. Now the weighted average life (WAL) of a fourth instar is
[INOPARS (average life of a parasitized instar) + (L—NOPARS)

(average life of an instar never parasitized}/L,
where NOPARS is the number parasitized per week and L is the total number of instars. Thus
WAL =[3.51 NOPARS+7.02(L-NOPARS)]/L
=(7.02L—3.51 NOPARS)/L.
(Since a fourth instar lives an average of 7.02 days, it is assumed that if it is
parasitized, it will live an average of 7.02/2=3.51 days.)
And p,=1/WAL=L/(7.02L—3.51NOPARS).
Now scaling , on the basis of a week
=L/ (1.00286L—0. 50143NOPARS).

Now consider NOPARS. The maximum number that can be parasitized per week is 6.65 W
since on the average a parasitoid can parasitize 11.4 larvae in its 12-day life [(11.4/12 days)
(7 days/week) =6. 65/week]. However if there are not 6.65 W larvae present, only L can be
parasitized. Hence,

NOPARS=min{6.65 W,L}.
Thus P2=1I2W/ (1. 00286L—0. 50143NOPARS)s.
3) P3=P(death of a pupa)
=P(birth of a preoviposition adult) =, (P)/s
where gp=the death rate of the pupae.
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pe=1/average life of a pupa
=(1/4.92 days) (7 days/week) =1. 42276 /week.
Thus P3=1.42276(P)/s.
4) P4=P(death of a preoviposition adulit)
=P(birth of a mature adult) =p3(PA)/s,
where yz;=the death rate of preoviposition adults.
ps=1/average life of a preoviposition adult
=(1/16 days) (7 days/week) =0. 4375/week.
Thus P4=0.4375(PA)/s.
5) Pb5=P(death of mature adult) =, (MA)/s,
where yg,=the death rate of mature adults.
ra=1/average life of a mature adult
=(1/31.9 days) (7 days/week) =0. 219436/week,
Thus P5=0.219436 (MA)/s.
6) P6=P(birth of a parasitoid) =2;(W) (L) /s,
where A;=the birth rate of the wasps.
4;=30 PROPOR, where PROPOR is the porportion of encounters that result in parasitization,
since parasitization results in an average of 30 births.
Now PROPOR=NOPARS/(L)(W).
Thus P6=30 NOPARS(W) (L)/(W)(L)s=30 NOPARS/s.
7) P7=P(death of a parasitoid) = u;(W)/s,
where p;=the death rate of the parasitoid.
us=1/average life of a parasitoid
=(1/12 days) (7 days/week) =0. 5833. /week.
Thus P7=0.5833 (W)/s.
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