МЕЖДУНАРОДНАЯ ОРГАНИЗАЦИЯ ПО БИОЛОГИЧЕСКОЙ БОРЬБЕ С ВРЕДНЫМИ ЖИВОТНЫМИ И РАСТЕНИЯМИ (МОББ)

ВОСТОЧНО-ПАЛЕАРКТИЧЕСКАЯ РЕГИОНАЛЬНАЯ СЕКЦИЯ (ВПРС МОББ)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО НАУЧНЫХ ОРГАНИЗАЦИЙ (ФАНО) ФГБНУ ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ЗАЩИТЫ РАСТЕНИЙ (ВИЗР)

ООО «ИННОВАЦИОННЫЙ ЦЕНТР ЗАЩИТЫ РАСТЕНИЙ» (ИЦЗР)

ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ ВПРС МОББ

52

Материалы XII сессии Генеральной Ассамблеи ВПРС МОББ (в связи с 40-летием деятельности) и докладов Международной научной конференции «Биологическая защита растений: успехи, проблемы, перспективы» (24 – 27 апреля 2017 г., Санкт-Петербург)

САНКТ-ПЕТЕРБУРГ 2017

УДК 632.937 ББК 44

Восточно-Палеарктическая региональная секция (ВПРС) является ассоциацией, которая входит в Международную организацию по биологической борьбе с вредными животными и растениями (МОББ). Деятельность секции распространяется на восточноевропейские страны, страны ближнего востока и Азии, расположенные в пределах зоогеографической зоны Восточной Палеарктики.

Секретариат:

Россия, 107282, Москва, ул. Широкая, д. 1, корп. 4, оф.833

Президент: В. Долженко (Россия).

Вице-президент: Д. Сосновска (Польша)

М. Главендекетич (Сербия)

В. Надыкта (Россия)

Генеральный

секретарь: Э. Садомов

Редакционно-издательская комиссия:

В.А. Павлюшин, В.И. Долженко, Н.Р. Гончаров, Э.А. Садомов, Ю.И. Гниненко, А.Б. Лаптиев, С.Г. Удалов

Ответственный за выпуск Н.Р. Гончаров

ISBN 978-5-93717-058-3

- © ВПРС МОББ
- © ФГБНУ Всероссийский НИИ защиты растений
- © ООО «Инновационный центр защиты растений

INTERNATIONAL ORGANIZATION FOR BIOLOGICAL CONTROL OF NOXIOUS ANIMALS AND PLANTS (IOBC)

EAST PALEARCTIC REGIONAL SECTION (IOBC/EPRS)

FEDERAL AGENCY OF SCIENTIFIC ORGANIZATIONS (FANO)

FEDERAL STATE BUDGETARY SCIENTIFIC INSTITUTION ALL-RUSSIAN RESEARCH INSTITUTE OF PLANT PROTECTION (VIZR)

«INNOVATION CENTER FOR PLANT PROTECTION Ltd.» (ICZR)

INFORMATION BULLETIN IOBC/EPRS

52

Materials of the XII session of the IOBC/EPRS General Assembly (dedicated to the 40th anniversary activities) and reports of the International scientific conference **«Biological plant protection: achievements, problems, prospects»**(April, 24 – 27, 2017, Saint-Petersburg)

ST.PETERSBURG 2017 UDC 632.937 BBK 44

The East Palearctic Regional Section (EPRS) is an association which is a part of the International Organization for Biological Control of noxious animals and plants (IOBC/EPRS). The activities of the section applies to Eastern European countries, the Middle East and Asian countries, situated within the East Palearctic zoogeographical region.

The Secretariat:

Russia, 107282, Moscow, ul. Shirokaya, 1, bld.4, office 833

President: V. Dolzhenko (Russia).

Vice-President: D. Sosnowska (Poland)

M. Glavendeketich (Serbia)

V. Nadykta (Russia)

Secretary-General: E. Sadomov

The editorial and publishing Committee:

V. Pavlyushin, V. Dolzhenko, N. Goncharov, E. Salamov,

Y. Gninenko, A. Laptiev, S. Udalov

Responsible for the edition and release N. Goncharov

ISBN 978-5-93717-058-3

[©] EPRS / IOBC

[©] FSBSI All-Russian research Institute of plant protection

[©] OOO «Innovation center of plant protection

АЛЕОХАРИНЫ (STAPHYLINIDAE, ALEOCHARINAE) В АГРОЛАНДШАФТАХ С РАЗЛИЧНЫМИ ПОЧВАМИ НА СЕВЕРО-ЗАПАДЕ РОССИИ

Гусева О.Г., Коваль А.Г.

Всероссийский НИИ защиты растений (г. Санкт-Петербург) E-mail: olgaguseva-2011@yandex.ru

Для алеохарин (Staphylinidae, Aleocharinae) наиболее благоприятна легкая, рыхлая и богатая органикой супесчаная почва. На такой почве обилие этих хищников на полях картофеля в 8 раз, а на опушках лесов — в 17 раз выше по сравнению с аналогичными биотопами на суглинистой почве.

Среди очень большого семейства стафилинид (Coleoptera, Staphylinidae) по распространению и обилию в агроценозах, а также по их роли в уничтожении вредителей с.-х. культур, выделяются представители подсемейства Aleocharinae, в частности, из рода *Aleochara*.

Наиболее подробные исследования распределения алеохарин по различным полям и примыкающим к ним биотопам проводились в агроландшафте Меньковского филиала Агрофизического института – МФ АФИ, (Ленинградская обл., Гатчинский р-н, д. Меньково) в 2004—2010 гг. на полях экспериментальных севооборотов и примыкающих к ним обочинах и опушке леса. Дополнительные исследования проводились в агроландшафте Тосненской лаборатории Всероссийского НИИ защиты растений – ВИЗР (Ленинградская обл., Тосненский р-н, пос. Ушаки) в 1983—1985 и 2003—2006 гг. Все почвы в районах работ дерново-подзолистого типа, но разного гранулометрического состава. Для оценки обилия данных жуков применяли почвенные ловушки с 4% раствором формалина.

Наиболее благоприятные для алеохарин условия складываются в агроландшафтах на рыхлой и богатой органикой супесчаной почве, которая пронизана микрополостями, благоприятными для обитания данных жуков. По данным А.Л. Тихомировой (1967), представители Aleocharinae тесно связаны со скважинами почвы, которые требуются им для передвижения и укрытия. Так, в агроландшафте МФ АФИ на супесчаной почве отмечен 31 вид из 17 родов этих хищников. Из них только 2 вида ежегодно встречались во всех биотопах – Aloconota gregaria (Er.) и Acrotona fungi (Grav.).

Комплексы алеохарин обрабатываемых земель и примыкающих к ним обочин полей и опушек леса сильно обособлены. Так, из 16 видов, обитающих в этих смежных с полями биотопах, только 5 встречались на обрабатываемых землях. Это – Drusilla canaliculata (F.), Oxypoda exoleta Er., A. gregaria, A. fungi и Aleochara brevipennis Grav. (табл.).

На обочинах полей и опушке леса отмечены наиболее высокие показатели динамической плотности алеохарин – 10.9–13.9 особей на 10 ловушко-суток (л.-с.). В данных биотопах наиболее многочисленными герпетобионтами были муравьи.

Таблица. Средняя динамическая плотность (особей на 10 ловушко-суток) и биоразнообразие алеохарин (Staphylinidae, Aleocharinae) в агроландшафте МФ АФИ (Ленинградская обл., Меньково, 2004–2010 гг.)

Вид	Биотоп							
	1	2	3	4	5	6	7	8
Bolitochara sp.								0.05
Drusilla canaliculata (F.)		0.02	0.01	0.01		0.02	10.23	9.26
Zyras cognatus (Märk.)							0.01	0.05
Zyras humeralis (Grav.)								0.29
Ilyobates sp.		0.05	0.01			0.01		
Ocalea badia Er.							0.11	0.69
Oxypoda abdonimalis (Mnnh.)							0.02	
Oxypoda alternans (Grav.)							0.01	0.06
Oxypoda brevicornis (Steph.)						0.01		
Oxypoda exoleta Er.		0.01				0.03	0.07	0.39
Oxypoda lividipennis Mnnh.		0.01			0.03			
Parocyusa rubicunda (Er.)			0.01					
Amischa analis (Grav.)	0.04	0.08	0.07	0.23	0.01	0.03		
Amischa bifoveolata (Mnnh.)		0.01				0.01		
Amischa nigrofusca (Steph.)		0.01						
Aloconota gregaria (Er.)	0.88	0.58	1.20	0.95	0.50	0.10	0.01	0.05
Atheta laticollis (Steph.)						0.01		
Atheta sp.								0.93
Acrotona fungi (Grav.)	0.06	0.29	0.03	0.13	0.07	1.03	0.33	2.06
Dinaraea angustula (Gyll.)	1.36	0.24	0.66	0.47	0.03	0.19		
Geostiba circellaris (Grav.)							0.01	0.02
Aleochara bilineata Gyll.		0.11	0.01			0.03		
Aleochara bipustulata (L.)	1.66	0.78	0.19	0.16		0.01		
Aleochara brevipennis Grav.		0.06			0.01	0.01	0.01	
Aleochara curtula (Gz.)		0.01					0.02	
Aleochara sp.							0.01	
Другие виды			0.01	0.05		0.03	0.03	
Количество видов	5	14	11	7	6	15	13	11
Суммарная динамическая плотность	4.0	2.3	2.2	2.0	0.7	1.5	10.9	13.9
Н	0.51	0.69	0.44	0.61	0.37	0.47	0.14	0.50
C	0.34	0.28	0.47	0.32	0.61	0.50	0.89	0.48

Примечание. 1 – чистый пар; 2 – поля картофеля; 3 – яровые зерновые; 4 – однолетние травы (вика с овсом); 5 – озимые зерновые; 6 – многолетние травы (клевер и тимофеевка); 7 – обочины полей; 8 – опушка леса; Н – показатель разнообразия Шеннона, С – показатель концентрации доминирования Симпсона.

Поэтому там преобладал (94% и 67% от всех собранных алеохарин соответственно на обочинах и опушке леса) мирмекофильный вид — *Drusilla canaliculata* F. На полях встречались лишь отдельные особи этого вида, что связано с низкой плотностью муравьев на обрабатываемых землях.

Астотопа fungi часто встречался за пределами обрабатываемых земель на участках под кронами деревьев с листовым перегноем и рыхлой почвой. Этот вид обычен также на полях многолетних трав. Максимальный показатель его обилия отмечен в $2010~\rm r$. на поле клевера с тимофеевкой на окультуренной почве $-2.5~\rm ocoби$ на $10~\rm n$.-с. Отдельные особи данного вида были зафиксированы и в растительном ярусе при учетах методом кошения на полях яровых зерновых культур и многолетних трав.

Aloconota gregaria чаще встречался на возделываемых землях, чем на смежных с ними биотопах. В агроценозах Ленинградской обл. это один из самых массовых стафилинид и важный энтомофаг ряда опасных вредителей (Гусева, 2014). Наиболее высокие показатели динамической плотности данного вида в агроландшафте МФ АФИ отмечены на полях яровых зерновых культур (табл.).

Таким образом, если рассматривать примыкающие к полям биотопы, для которых характерны высокие показатели обилия алеохарин, в качестве источника обогащения комплексов этих энтомофагов на полях, то следует иметь в виду только один и при этом не самый многочисленный вид — $Acrotona\ fungi$, для которого благоприятны участки с рыхлым и богатым перегноем почвой как на обрабатываемых землях, так и за их пределами.

Среди обрабатываемых земель, вопреки представлениям о фаунистической бедности полей пропашных культур, на рыхлой супесчаной почве на полях картофеля комплекс алеохарин характеризуется наиболее высокими показателями биоразнообразия: H = 0.69 (показатель разнообразия Шеннона) и C = 0.28 (показатель концентрации доминирования Симпсона). В этих условиях за весь период наблюдений на полях картофеля средняя динамическая плотность алеохарин составила 2.3 особи на $10\ n.-c.$, что является одним из самых высоких показателей (табл.). По мере увеличения окультуренности почвы, способствующей увеличению скважности, в агроценозе картофеля возрастает обилие этих энтомофагов. Так, средняя за сезон динамическая плотность *Aloconota gregaria* на поле картофеля на высокоокультуренном участке в 2.9 раза превышала соответствующий показатель на малоокультуренном (Гусева, Коваль, 2015).

Совершенно иная ситуация складывается в агроландшафте на суглинистой почве, характеризующейся высокой плотностью сложения и избыточным увлажнением. В таких условиях могут обитать немногие виды алеохарин. Так, в агроландшафте Тосненской лаборатории ВИЗР за 6 лет исследований на полях и примыкающих к ним биотопах отмечено только 17 видов алеохарин из 10 родов. Комплекс видов, обитающих на обочинах, также сильно обособлен от соответствующего комплекса на полях и представлен преимущественно мирмекофилами из родов *Drusilla* и *Zyras*. Отличительной особенностью комплекса алеохарин на

суглинистой почве, является очень низкая динамическая плотность большинства видов. Так, на опушках лесов в агроландшафте на суглинистой почве динамическая плотность алеохарин составила 0.7 особей на 10 л.-с., что в 17 раз ниже, чем на сухих опушках в агроландшафте на супесчаной почве. В частности, обилие наиболее массовых видов *D. canaliculata* – в 15 раз, а *Acrotona fungi* – в 34 раза ниже по сравнению с агроландшафтом МФ АФИ. На полях картофеля с рыхлыми аэрируемыми гребнями и дренажными канавами в меньшей степени проявляется переувлажнение, которое характерно для агроландшафта на суглинистой почве. При этом средняя динамическая плотность алеохарин на полях картофеля Тосненской лаборатории ВИЗР составила 0.3 особи на 10 л.-с., что в 8 раз меньше соответствующего показателя на полях картофеля МФ АФИ на супесчаной почве. Для отдельных видов различия были еще более значительными. Так, на полях картофеля обилие *Aloconota gregaria* на суглинистой почве в 14 раз, *Dinaraea angustula* – в 13 раз и *Acrotona fungi* – в 12 раз меньше, чем на супесчаной.

Обилие вида Aleochara bilineata Gyll., развитие которого связано с капустными мухами, зависит также от численности последних и наличия крестоцветных культур. Многолетние наблюдения на полях Тосненской лаборатории ВИЗР показали, что на посевах рапса, заселенных капустными мухами, динамическая плотность A. bilineata многократно возрастала. Самый высокий показатель был отмечен в 1984 году на поле рапса, высеянного на гребнях, — 1.8 особей на 10 л.-с. При этом доля особей A. bilineata составила 96% от общего количества собранных алеохарин. Это в 19 раз превышало обилие A. bilineata на том же поле, засеянном подсолнечником, в предыдущем году, и в 2 раза превышало их обилие на соседнем поле рапса, посеянного на выровненной поверхности почвы. Более рыхлая и сухая почва гребней, как и в агроценозе картофеля, благоприятна для этих хищников. В последующие годы при отсутствии крестоцветных культур в севооборотах агроландшафта Тосненской лаборатории ВИЗР A. bilineata, независимо от отсутствия или наличия гребней на полях, был уже редким видом.

Таким образом, важными факторами, определяющими возможность обитания алеохарин и обилие этих энтомофагов, являются гранулометрический состав почвы, степень ее окультуренности и наличие гребней, улучшающих аэрацию почвы в условиях избыточного увлажнения. Наиболее благоприятны для алеохарин легкие окультуренные почвы. Для стафилинида Aleochara bilineata, тесно связанного с капустными мухами, и мирмекофильных видов из родов Drusilla и Zyras огромное значение имеет также наличие кормовых объектов.

Литература

- 1. Гусева О.Г. Стафилин *Aloconota gregaria* Er. (Coleoptera, Staphylinidae) как многоядный хищник в агроландшафтах Северо-Запада России // Вестн. защиты растений. 2014. № 1. С. 17–20.
- Гусева О.Г., Коваль А.Г. Влияние окультуривания дерново-подзолистой почвы на структуру комплексов и обилие напочвенных хищных жесткокрылых (Coleoptera: Carabidae, Staphylinidae) на Северо-Западе России // Энтомол. обозр. 2015. Т. 94, вып. 4. С. 519–531.

 Тихомирова А.Л. Некоторые сравнительные данные по экологии и поведению жуковстафилинид (Coleoptera, Staphylinidae) // Зоол. журн. 1967. Т. 46, вып. 12. С. 1785– 1798.

ALEOCHARINES (STAPHYLINIDAE, ALEOCHARINAE) IN AGRICULTURAL LANDSCAPES WITH DIFFERENT SOILS IN NORTHWESTERN RUSSIA Guseva O.G., Koval A.G.

Light, loose and organic-rich sandy loam soils are shown to be the most favorable for aleocharines (Staphylinidae, Aleocharinae). The abundance of these predators is 8-fold higher on potato fields and 17-fold higher on forest edges than in similar habitats on loamy soils.

УДК 595.792 (4-013)

НОВЫЕ НАХОДКИ НЕСКОЛЬКИХ ВИДОВ АФИДИИД (HYMENOPTERA: АРНІDІІDAE) В РОССИИ И СОПРЕДЕЛЬНЫХ СТРАНАХ

Давидьян Е.М.

Всероссийский НИИ защиты растений (С.-Петербург, Россия) E-mail: gdavidian@yandex.ru

Приводятся сведения о новых находках Calaphidius elegans Mackauer, 1961 (впервые для Европейской части России); Lysiphlebus (Phlebus) orientalis Starý & Rakhshani, 2010 (впервые для России и Молдавии); Lysiphlebus (Phlebus) alpinus Starý, 1971 (впервые для России). Используемый в защите культур закрытого грунта полифаг Aphidius (Aphidius) colemani Viereck, 1912 обнаружен в природных условиях в Республике Бурятия и в Абхазии.

Настоящее сообщение подготовлено по материалам работы автора в рамках проекта «Ревизия таксономической и генетической структуры биоразнообразия перепончатокрылых насекомых России в целях рационального использования их природного потенциала» (грант РФФИ № 15-29-02466). В нем приводятся новые данные по распространению нескольких видов редких наездников, а также интересные находки в природе *Aphidius* (*Aphidius*) colemani Viereck, 1912, применяемого в биологической защите растений.

Широко используемый в России в защите культур закрытого грунта полифаг *Aphidius (Aphidius) colemani* Viereck, 1912 впервые собран в природных условиях в Республике Бурятия: Улан-Уде, из тлей на *Cannabis sativa*, 28.VI.2005 (А. Г. Коваль), 1 ♀. Согласно Давидьян (2007) этот вид встречается на юге Европейской части России, в республиках Средней Азии, на Среднем Востоке, в Индии, Южной Африке, в Северной и Южной Америке, Океании; интродуцирован в Японию, Чехию и Словакию. Несколько наездников были также впер-