Macroinvertebrates of Altai mountain rivers: factors of their formation and features of distribution within altitudinal gradientProceedings of the Zoological Institute RAS, 2023, 327(3): 419–429 · https://doi.org/10.31610/trudyzin/2023.327.3.419 Abstract With an increase in altitude, both abiotic and biotic conditions in mountain watercourses change. To assess the features of spatial distribution of macroinvertebrates as well as to identify the driving factors of this dynamics, the data on species richness, abundance and biomass of EPT taxa (mayfly, stonefly, caddisfly) from 21 small mountain rivers of Altai were analyzed. By location, all rivers were divided into 4 groups: the ones running in the low-mountain (<1000 m asl) zone, in the low (1000–1500) and upper (1500–2000) parts of the middle mountains and in the high-mountain (>2000 m asl) zone. A total of 71 EPT macroinvertebrate taxa were recorded in the studied streams. Species richness (according to the average species number per sample) as well as abundance and biomass of macroinvertebrates decreased with an increase in altitude. The maximum variance in structural indicators of communities appeared due to the combined influence of the location of the altitudinal zone and phytoplankton development level (estimated by the content of chlorophyll a). At the same time, categorical predictors (both abiotic and biotic) included in the analysis better explained the variability of diversity-related indicators than that of abundance and biomass. When developing the environmental monitoring programs for mountain watercourses, the identified trends in reduction (with altitude) of species richness of macroinvertebrate taxa responsible for the formation of taxonomically poor and strongly vulnerable communities in high-altitude areas should be taken into account. Key words Upper Ob, altitudinal gradient, mountain rivers, zoobenthos, spatial distribution Submitted February 3, 2023 · Accepted July 24, 2023 · Published September 25, 2023 References Ao S., Ye L., Liu X., Cai Q. and He F. 2022. Elevational patterns of trait composition and functional diversity of stream macroinvertebrates in the Hengduan Mountains region, Southwest China. Ecological Indicators, 144: 109558. https://doi.org/10.1016/j.ecolind.2022.109558 Arana J., Tolentino D.A., Miranda R., Tobes I., Araujo-Flores J., Carrasco-Badajoz C. and Rayme-Chalco C. 2021. Distribución altitudinal de macroinvertebrados acuáticos y su relación con las variables ambientales en un sistema fluvial amazónico (Perú). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(177): 1097–1112. https://doi.org/10.18257/raccefyn.1436 Bhat J., Kumar M., Pala N., Shah S., Dayal S., Gunathilake C. and Negi A. 2020. Influence of altitude on the distribution pattern of flora in a protected area of Western Himalaya. Acta Ecologica Sinica, 40(1): 30–43. https://doi.org/10.1016/j.chnaes.2018.10.006 Birrell J.H., Shah A.A., Hotaling S., Giersch J.J., Williamson C.E., Jacobsen D. and Woods H.A. 2020. Insects in high-elevation streams: Life in extreme environments imperiled by climate change. Global Change Biology, 26(12): 6667–6684. https://doi.org/doi:10.1111/gcb.15356 Chapman L.J., Schneider K.R., Apodaca C. and Chapman C.A. 2004. Respiratory ecology of macroinvertebrates in a swamp-river system of East Africa. BIOTROPICA, 36(4): 572–585. https://doi.org/10.1646/1598 Contador T., Kennedy J.H., Rozzi R. and Villarroel J.O. 2015. Sharp altitudinal gradients in Magellanic Sub-Antarctic streams: patterns along a fluvial system in the Cape Horn Biosphere Reserve (55°S). Polar Biology, 38: 1853–1866. https://doi.org/10.1007/s00300-015-1746-4 Croijmans L., De Jong J.F. and Prins H.H.T. 2021. Oxygen is a better predictor of macroinvertebrate richness than temperature–a systematic review. Environmental Research Letters, 16(2): 023002. https://doi.org/10.1088/1748-9326/ab9b42 Culler L.E., McPeek M.A. and Ayres M.P. 2014. Predation risk shapes thermal physiology of a predaceous damselfly. Oecologia, 176: 653–660. https://doi.org/10.1007/s00442-014-3058-8 Echeverría-Galindo P.G., Pérez L., Correa-Metrio A., Avendano C., Mogue B., Brenner M., Cohuo S., Macario-González L. and Schwalb A. 2019. Tropical freshwater ostracodes as environmental indicators across an altitude gradient in Guatemala and Mexico. Revista de Biología Tropical, 67(4): 1037–1058. https://doi.org/10.15517/rbt.v67i4.33278 Everall N.C., Johnson M.F., Wood P., Farmer A., Wilby R. and Measham N. 2017. Comparability of macroinvertebrate biomonitoring indices of river health derived from semi-quantitative and quantitative methodologies. Ecological indicators, 78: 437–448. https://doi.org/10.1016/j.ecolind.2017.03.040 García-Ríos R., Peláez O. and Moi D. 2020. Effects of an altitudinal gradient on benthic macroinvertebrate assemblages in two hydrological periods in a Neotropical Andean river. Ecologia Austral, 30(1): 33–44. https://doi.org/10.25260/EA.20.30.1.0.995 Guo W., Gong D. and Zhao W. 2022. Advances in selection mechanism of aquatic insects on water flow velocity and substrate in small mountain rivers. E3S Web of Conferences, 352: 03042. https://doi.org/10.1051/e3sconf/202235203042 He F., Wu N., Dong X., Tang T., Domisch S., Cai Q. and Jähnig S.C. 2020. Elevation, aspect, and local environment jointly determine diatom and macroinvertebrate diversity in the Cangshan Mountain, Southwest China. Ecological Indicators, 108: 105618. https://doi.org/doi:10.1016/j.ecolind.2019.105618 Heriques-Oliveira A. and Nessimian J. 2010. Aquatic macroinvertebrate diversity and composition in streams along an altitudinal gradient in Southeastern Brazil. Biota Neotropica, 10(3): 115–128. https://doi.org/10.1590/S1676-06032010000300012 Jacobsen D. 2000. Gill size of trichopteran larvae and oxygen supply in streams along a 4000-m gradient of altitude. Journal of the North American Benthological Society, 19(2): 329–343. https://doi.org/10.2307/1468075 Jacobsen D. 2003. Altitudinal changes in diversity of macroinvertebrates from small streams in the Ecuadorian Andes. Archiv für Hydrobiologie, 158(2): 145–167. https://doi.org/10.1127/0003-9136/2003/0158-0145 Jacobsen D. 2004. Contrasting patterns in local and zonal family richness of stream invertebrates along an Andean altitudinal gradient. Freshwater Biology, 49: 1293–1305. https://doi.org/10.1111/j.1365-2427.2004.01274.x Jeong S.-B., Kim D.-S., Jeon H.-S., Yang K.-S. and Kim W.-T. 2010. Species richness of aquatic insects in wetlands along the altitudinal gradient in Jeju, Korea: Test of Rapoport's Rule. Korean Journal of Applied Entomology, 49(3): 175–185. https://doi.org/10.5656/KSAE.2010.49.3.175 Kondolf G.M. and Li S. 1992. The pebble count technique for quantifying surface bed material size in instream flow studies. Rivers, 3(2): 80–87. Körner C. 2007. The use of 'altitude' in ecological research. Trends in Ecology and Evolution, 22: 569–574. https://doi.org/10.1016/j.tree.2007.09.006 Melo A.S. and Froehlich C.G. 2001. Macroinvertebrates in Neotropical streams: richness patterns along a catchment and assemblage structure between 2 seasons. Journal of the North American Benthological Society, 20(1): 1–16. https://doi.org/10.2307/1468184 Rico-Sánchez A.E., Rodríguez-Romero A.J., Sedeño-Díaz J.E., López-López E. and Sundermann A. 2022. Aquatic macroinvertebrate assemblages in rivers influenced by mining activities. Scientific Reports, 12: 3209. https://doi.org/10.1038/s41598-022-06869-2 Tomanova S., Tedesco P.A., Campero M., Van Damme P.A., Moya N. and Oberdorff T. 2007. Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the River Continuum Concept. Fundamental and Applied Limnology, 170(3): 233–241. https://doi.org/10.1127/1863-9135/2007/0170-0233 Tonkin J.D., Tachamo Shah R.D., Shah D.N., Hoppeler F., Jähnig S.C. and Pauls S.U. 2017. Metacommunity structuring in Himalayan streams over large elevational gradients: the role of dispersal routes and niche characteristics. Journal of Biogeography, 44(1): 62–74. https://doi.org/doi:10.1111/jbi.12895 Wang J., Meier S., Soininen J., Casamayor E.O., Pan F., Tang X., Yang X., Zhang Y., Wu Q., Zhou J. and Shen J. 2017. Regional and global elevational patterns of microbial species richness and evenness. Ecography, 40: 393–402. https://doi.org/10.1111/ecog.02216 Wang J., Soininen J., Zhang Y., Wang B., Yang X. and Shen J. 2011. Contrasting patterns in elevational diversity between microorganisms and macroorganisms. Journal of Biogeography, 38: 595–603. https://doi.org/10.1111/j.1365-2699.2010.02423.x Xing W., Yin M., Lv Q., Hu Y., Liu Ch. and Zhang J. 2014. Oxygen solubility, diffusion coefficient, and solution viscosity. In: W. Xing, G. Yin and J. Zhang (Eds). Rotating Electrode Methods and Oxygen Reduction Electrocatalysts. Elsevier, Amsterdam: 1–31. https://doi.org/10.1016/B978-0-444-63278-4.00001-X Yalles-Satha A., Alami M.E., Kechemir L.H., Desvilettes C. and Chenchouni H. 2022. Diversity, phenology and distribution of mayfly larvae (Ephemeroptera) along an altitudinal gradient in two permanent Wadis of Algeria. Oriental Insects, 56(1): 14–46. https://doi.org/10.1080/00305316.2021.1904022 Yanygina L.V. 2022. Spatial aspects of macroinvertebrate distribution in Altai mountain streams. Inland Water Biology, 15: 859–865. https://doi.org/10.1134/S1995082922060207
|
© Zoological Institute of the Russian Academy of Sciences
|