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According to the competitive exclusion principle, species with 
low competitive abilities should be excluded by more efficient 
competitors; yet, they generally remain as rare species. Here, 
we describe the positive and negative spatial association net-
works of 326 disparate assemblages, showing a general orga-
nization pattern that simultaneously supports the primacy of 
competition and the persistence of rare species. Abundant 
species monopolize negative associations in about 90% of 
the assemblages. On the other hand, rare species are mostly 
involved in positive associations, forming small network mod-
ules. Simulations suggest that positive interactions among 
rare species and microhabitat preferences are the most prob-
able mechanisms underpinning this pattern and rare species 
persistence. The consistent results across taxa and geography 
suggest a general explanation for the maintenance of biodi-
versity in competitive environments.

Rare species, in terms of low abundance, are the main  
component of the diversity of ecological assemblages1. However, 
despite decades of intense investigation, the general mechanisms 
behind the persistence of these species are unclear. In theory,  
the widely assumed effects of competition between pairs of spe-
cies should preclude the persistence of weak competitors and the  
high diversity observed in natural assemblages2,3. Explanations 
for this diversity paradox include the differential roles of niche  
partitioning, intraspecific competition, facilitation, indirect and 
neutral interactions4–9, among others. Yet, thus far, there is no con-
sensus to explain rare species persistence across taxa and environ-
mental conditions.

The spatial arrangement of individuals plays a crucial role in 
unveiling the mechanisms underpinning species assembly and 
coexistence10–21. Because individuals within assemblages are not 
homogeneously distributed, their spatial organization may both 
reflect important assembly processes10,11 and induce species coex-
istence per se12. For example, the patchy distribution of a dominant 
species might prevent the monopolization of resources and allow 
the existence of its subordinate species12,13

. Hence, considering spa-
tial aspects of coexistence appears to be an important step in eluci-
dating assembly mechanisms12. The spatial sorting of species can 
be the outcome of divergent habitat preferences, dispersal abilities 
and biotic interactions, although the role of interactions is thought 
to prevail under rather homogeneous environmental conditions, 
especially at very fine spatial scales11,14,15. The organization of spe-
cies within assemblages can be translated into association networks 
of species that are spatially aggregated (positive networks) or segre-
gated (negative networks). Association networks of disparate bio-
logical assemblages can provide valuable empirical evidence of the 
main forces driving the assembly of species16–20, helping to reveal 
general mechanisms underlying species coexistence.

In the present study, we describe a general pattern of positive and 
negative species associations that is consistent with the competitive 
exclusion paradigm but, at the same time, can explain the persis-
tence of rare species in natural assemblages. We base our results 
on a dataset of 326 assemblages21 that meet the following criteria: 
(1) each assemblage comprises taxa from only one trophic guild, 
thereby excluding the possibility that species associations result from  
direct predation or parasitism; (2) each assemblage shows reduced 
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spatial extent and low environmental heterogeneity, to increase the 
probability that species associations are mainly due to biotic interac-
tions; (3) the abundance of at least ten species is recorded in a mini-
mum of ten samples, to improve statistical power (Supplementary 
Appendix 1); (4) the dataset represents a wide variety of biomes 
(for example, tropical forests, deserts, temperate steppes and polar 
climates), thus avoiding biome-specific results; and (5) it encom-
passes a diversity of taxa (such as bryophytes, vascular plants and 
insects among others), to ensure the generalization of our results 
across taxonomic and functional groups. We generated positive and 
negative association networks for each assemblage by comparing 
the observed spatial association patterns among species to a null 
model22. Species pairs that significantly deviated from random 
expectations received positive or negative links in their respective 
association networks (Fig. 1).

We first analysed whether the structure of positive and negative 
association networks can reflect predictions from the competitive 
exclusion principle. Given that competition is heavily emphasized 
in the literature2, one would expect species to be more segregated 
than aggregated in natural systems. If so, negative networks should 
be more densely connected (that is, more links per species) than 
their positive counterparts. In accordance, negative networks were 
more connected than their positive pairs in a notable 93.2% of all 
assemblages (t = 17.01, P < 0.001; Fig. 2a). Differences in connec-
tivity remained similar after accounting for differences in network 
size (t = −16.81 and P < 0.001 for 78.8% of the assemblages) or 
when calculating differences in the average number of links (that 
is, average species degree; t = −14.69 and P < 0.001 for 69.0% of 

the assemblages). Furthermore, if abundance is considered to be 
an expression of the species’ competitive abilities23, the number of 
segregations should be monopolized by the most abundant spe-
cies. Accordingly, results indicated a strong positive correlation 
between abundance and species degree in negative networks (mean 
Spearman’s ρ = 0.65, s.d. = 0.23), but a weak or even negative corre-
lation in positive networks (mean ρ = 0.02, s.d. = 0.38), with differ-
ences between networks being statistically significant (t = −23.88, 
P < 0.001; Fig. 2b). Moreover, we found evidence showing that a 
particular species is more often involved in negative associations 
when it becomes abundant (Supplementary Appendix 2). Both the 
greater density of links and the relationship between species degree 
and abundance in negative networks support current knowledge 
about the prevailing role of competitive interactions in sustaining 
the dominance of abundant species.

Yet, if the competitive exclusion principle is supported across 
several assemblages, how can rare species persist? To search for 
potential mechanisms answering this question we looked at the role 
played by rare species in association networks. Curiously, we found 
that rare species are mostly involved in positive associations in 
91.7% of the assemblages studied, where positive networks showed 
a higher incidence of less abundant species than their negative pairs 
(t = 22.42, P < 0.001; Fig. 2c). However, such spatial aggregations 
do not occur among every rare species in the assemblage. In fact, 
we found that 91.1% of positive networks were more modular than 
their negative counterparts (t = 39.68, P < 0.001;, Fig. 2d). This result 
remained similar after accounting for network size and connectivity 
(t = 11.31 and P < 0.001 for 67.3% of assemblages). Moreover, while 

S
am

pl
es

Species

Raw
similarity
network

Null model

–

+

a

b

Fig. 1 | Approaching assembly mechanisms through the lens of positive and negative association networks. a, Species segregations and aggregations 
can inform on the main mechanisms underlying ecological assemblages. These spatial patterns are measured between species pairs using the similarity 
in the spatial distribution of their individuals. Observed similarities are compared with those obtained by a null model to distinguish actual associations 
from those generated by chance. Species pairs whose individuals are more aggregated in samples than expected by chance receive a positive link in the 
association networks (blue nodes). Species pairs whose individuals are more segregated than randomly expected receive a negative link in the association 
networks (red nodes). b, Positive (blue) and negative (red) networks of a tropical rainforest tree assemblage (see ‘Barra_Paraguacu’ in Supplementary 
Table 1). The size of the nodes is proportional to the species’ abundances at the assemblage level. Networks were plotted using the Fruchterman–Reingold 
force-directed layout algorithm37.
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60.7% of positive networks were significantly modular, only 13.8% 
of negative ones showed this pattern. Taken together, these findings 
show that rare species tend to generate modular networks of posi-
tive spatial associations.

The patterns of negative and positive associations networks 
are largely invariant regardless of different probability thresholds 
to detect significant associations, the use of quantitative links and 
assumptions of disparate null models (Supplementary Appendix 1). 
This robust and conspicuous spatial organization suggests that the 
underlying mechanisms can also be responsible for the persistence 
of rare species. On the one hand, dissimilar habitat preferences 
between dominant species and groups of weak competitors14 may 
generate this pattern, also enhancing rare species persistence. Indeed, 
numerical simulations show that this possibility increased the prob-
abilities of reproducing realized association network patterns, 
regardless of different interaction networks reflecting hypothesized 
assembly mechanisms (Fig. 3a and Supplementary Appendix 3).  
However, this mainly occurs when habitat preferences are strong, a 
situation that should arise under marked environmental gradients 
most probably far from the reality of the fine-scaled assemblages 
studied in the present work. Complementarily, positive interactions 

within groups of rare species may also contribute and/or gener-
ate these modular positive networks. Moreover, this may increase 
the persistence of weak competitors since, just as in harsh abiotic 
environments24, the biotic harshness produced by superior competi-
tors could be counterbalanced by positive interactions among rare 
species. Accordingly, simulations show that the inclusion of posi-
tive interactions within groups of weak competitors increases the 
chance of species persistence by 58.2% compared to assemblages 
ruled by competition alone. Our simulations also reveal that this 
hypothesis most probably reproduces the observed patterns in asso-
ciation networks compared to other stabilizing mechanisms, such 
as neutral colonization-extinction dynamics9, intransitive competi-
tion25,26, differential density-dependent effects27,28 or facilitation by 
nurse species7 (Fig. 3b). Interestingly, the combination of habitats 
and positive interactions yields the highest probability of reproduc-
ing the observed network patterns (Fig. 3a). This further suggests 
that even under strong differences in habitat preferences, stabilizing 
forces, such as facilitation or complementarity, would enhance the 
coexistence of groups of rare species in reduced microhabitats15,17. 
Besides habitat selection, it seems that modular positive interac-
tions among rare species can contribute to the pattern we found and 

Spearman’s ρ  

−2 −1 0 1 2

0

20

40

60

−1 0 1
0

45

90

+ _

Modularity differences
(positive-negative)

−1.0 −0.5 0 0.5 1.0

0

20

40

60

80

100

0 0.5 1.0

0

65

130

a b

d

+ _

Connectivity differences
(positive-negative)

N
um

be
r 

of
 a

ss
em

bl
ag

es

−1.0 −0.5 0 0.5 1.0

0

20

40

60

80

100

120

Connectivity

0 0.5 1.0
0

60

120
+ _

Abundance-species degree differences
(positive-negative)

c

Abundance differences
(positive-negative)

N
um

be
r 

of
 a

ss
em

bl
ag

es

Average abundance

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

0

50

100

150

0 0.15 0.30
0

110

220 + _

Fig. 2 | The contrasting patterns of positive and negative association networks. a, The higher connectivity of negative networks indicates that species 
segregation dominates over species aggregation. b, These segregations are monopolized by dominant species, as shown by the strong relationship 
between abundance and species degree (that is, number of links of a species) in negative networks. c,d, In contrast, less abundant species are more prone 
to generate positive associations (c), although these associations only occur among specific groups of rare species, as indicated by the higher modularity 
of positive networks (d). The main histograms show the differences in network features between pairs of positive and negative networks. The insets show 
the raw values for both types of networks, where the purple colour represents the overlap between both distributions.
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the persistence of these species, which agrees with recent experi-
mental evidence29.

Overall, our results show that ecological assemblages are con-
sistently organized in positive and negative association networks 
across the main biological groups (that is, animals and plants) and 
geography (Fig. 4 and Extended Data Fig 1). This ubiquity sheds 
light on the long-standing diversity paradox since the potential 
mechanisms leading to this organizational pattern can also enhance 
the persistence of rare species. Modular positive interactions among 
weak competitors emerged as a plausible mechanism even when 
assessed in conjunction with different microhabitat preferences. 
Questions remain about the relative contribution and feedback of 
these positive interactions and microhabitats. Nevertheless, the 
generality of the findings presented in this study bring us closer to 
understanding the assemblage of the vast biodiversity on Earth.

Methods
Data acquisition. Assemblage data were collected from published studies in 
peer-reviewed journals and our own surveys21 (Supplementary Appendix 4 and 
Supplementary Table 1). Each assemblage consists of at least ten samples where 
the abundance of at least ten species of the same trophic guild was recorded. To 
minimize the effects of environmental heterogeneity and dispersion on spatial 
patterns, we only included datasets that showed (1) low environmental variability 
across samples (excluding surveys where any kind of environmental gradient was 
reported or no clear information about it was provided), (2) a very reduced spatial 
extent (median = 0.1 ha, ranging from 0.01 to 25.6 ha), (3) a very small grain size 
to increase the probability of physical and/or chemical contact among all species 
in the samples (median = 100 m2, ranging from 0.002 to 400 m2, respectively), and 
(4) standardization among samples to avoid sampling biases (for example, effects 
of area). Following these criteria, we gathered a total of 385 datasets distributed 
worldwide and representing a wide taxonomic spectrum, including bryophytes 
(n = 71), tracheophytes (n = 279), anthozoans (n = 7) and insects (n = 28). 
Abundance was estimated as the number of individuals per sample in most of the 
assemblages, but a small number of assemblages included abundance data estimated 
as the percentage cover of the sampled surface (especially in bryophytes and plants). 
Since some null models only accept integer data (see later in the Methods), we 
rounded percentages when necessary. Finally, we only used those assemblages where 
both positive and negative networks showed at least two links (n = 326).

Generation of association networks. For each assemblage, we calculated similarity 
in abundance distribution across samples for each species pair i and j using the 
Schoener’s index30:

S i; jð Þ ¼ 1�
XN

k¼1

pik � pjk
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Fig. 3 | Positive interactions among weak competitors alone or together 
with habitat preferences reproduce realized association patterns. a, 
Dissimilarities in habitat preferences between dominant species and 
groups of rare species may generate the empirical patterns of association 
networks, regardless of different assembly mechanisms. However, this only 
occurs when habitat specialization is strong. Moreover, the combination 
of habitats and positive interactions among weak competitors (positive 
rare) yields the highest probabilities. The y axis represents the average 
probabilities of finding the four empirical patterns and the x axis depicts 
a gradient of habitat specialization (see Methods and Supplementary 
Appendix 3). The error bars depict the confidence intervals at α = 0.05. 
b, All theoretical models explaining species coexistence increase the 
chance of species persistence (non-extinction) relative to simulated 
assemblages only driven by hierarchical competition. However, positive 
interactions among groups of rare species is the most probable model to 
generate simulated assemblages showing the same association networks 
as empirical assemblages (connectivity, Fig. 2a; abundance-species 
degree, Fig. 2b; abundance, Fig. 2c; and modularity, Fig. 2d). The y axis 
represents the probability of simulated association networks showing 
empirical differences between positive and negative networks across 
different combinations of reproduction, mortality and dispersal rates where 
interactions are expressed (see Methods and Supplementary Appendix 3). 
In the boxplots, the centre line shows the median probabilities, being the 
box between the 25th and 75th percentiles and the whiskers at minimum 
and maximum probability once the outliers are discounted. Outliers are not 
shown. P, positive networks; N, negative networks.

Polar Humid temperate Humid tropical Dry

Fig. 4 | The organization of association networks remains invariant across 
the globe and regardless of taxa. The circles and triangles represent plant 
and animal assemblages, respectively. Green depicts assemblages where 
positive networks were both composed of less abundant species and more 
modular than their negative counterparts, whereas red shows assemblages 
where these patterns were not found. The map colours represent the Earth 
climatic zones as proposed by Bailey38 (available at www.unep-wcmc.org; 
accessed October 2017).
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where N is the number of samples and pik is the proportion of the total abundance 

of species i present in sample k pik ¼ xik=
PN
k¼1

xik

 

I

. We compared observed 

similarities to 999 null values obtained through randomization of species 
abundances using a fixed-fixed algorithm (that is, row and column totals were 
kept constant). For each observed similarity value, two one-tailed P values were 
calculated as the proportion of null values (plus the observation) that were higher 
than or equal to and lower than or equal to the observed value for positive and 
negative associations, respectively. We considered an aggregation or segregation 
significant in those cases where associated P values in any of the two tests were 
lower than or equal to 0.05. Alternative probability thresholds and null models 
provided quantitatively and qualitatively similar results (Supplementary Appendix 
1 and Supplementary Figs. 1 and 2). Significantly aggregated and segregated 
species pairs were used to generate unweighted links in the positive and negative 
association networks of each assemblage, respectively. It is important to note that 
the frequency of spurious associations (that is, type I errors) may be thought to be 
relatively high in species-rich assemblages due to multiple comparisons (however, 
see Rothman31). However, species pairwise similarities were compared against 
null values generated using a fixed-fixed assemblage-wise null model (that is, 
a strict null model making null hypotheses among comparisons to be different 
but intrinsically interdependent). This partially alleviates the detection of false 
positives while preventing the use of powerful false discovery rate methods32. 
Nevertheless, we used the same nominal error (that is, α = 0.05) to detect both 
positive and negative associations, making the rate of false discoveries equal in 
both types of networks and allowing unbiased comparisons of their structures. 
Indeed, the results remained largely constant when using different nominal errors 
(Supplementary Appendix 1 and Supplementary Fig. 1).

Network structure comparison. To explore whether positive and negative 
association networks reflected competitive processes, we compared their 
connectivity and their relationships between abundance (calculated as the sum 
of the abundances across samples) and species degree (that is, species’ number 
of links) for each pair of network types. Connectivity is defined as the number 
of realized links relative to the number of potential links. This measure of 
connectivity may be negatively correlated with network size. Hence, we also used 
the residual connectivity obtained from the residuals of a linear regression between 
the number of observed and potential links, both log-transformed33. On the other 
hand, the relationship between abundance and species degree was assessed using 
the Spearman’s ρ correlation coefficient. Finally, to search for differences between 
network types, we used a paired Student’s t-test, where the alternative hypothesis 
was that negative networks present higher means than their positive pairs.

To determine if rare species have a larger participation in positive association 
networks, we compared the average relative abundance, weighted by the number 
of links of each species in the network, between the species involved in positive 
and negative networks. We also explored if positive networks were more modular 
than their negative pairs by calculating modularity with the index proposed by 
Newman34 (Q) along with the optimization algorithm of Blondel et al.35. The 
algorithm was run 100 times and we selected the partition that showed the highest 
modularity value. Since modularity can be related to network size and connectivity, 
we compared observed and null modularity values from random networks 
generated using a null model that maintains the number of links and nodes, as well 
as the degree sequence (implemented in the RandNetGen v.1 software36). Then, we 
computed the relative modularity values as Qr = −2(P − 0.5), where P represents 
the proportion of null cases showing modularity higher than or equal to the 
observation. A paired Student’s t-test was used to explore the differences between 
network types in all cases.

Finally, we explored whether the probability of finding the aforementioned 
differences of positive and negative networks was related to the number of samples 
per assemblage (as indicative of sampling effort), an approximation of null model 
degrees of freedom (Supplementary Appendix 1), latitude, longitude, taxonomic 
group (that is, animals or plants) and species richness. To do so, we first generated 
four binomial dependent variables, based on whether (1) the negative networks 
of each assemblage were more densely connected than their positive pairs; (2) 
the negative networks presented higher positive abundance-species degree 
relationships; (3) the positive networks tended to be composed of less abundant 
species; and (4) the positive networks were more modular. Then, we fitted logistic 
models with a logit link function.

Numerical simulations. We ran simulations to explore whether different 
interaction matrices and/or habitat preferences can generate the patterns 
observed in association networks. We designed a simulation model composed 
of 20 samples and 10 species whose individuals were randomly distributed at the 
outset. Individuals reproduce, colonize a randomly chosen sample or die, with 
probabilities dependent on the density of individuals and the sample carrying 
capacity (K = 100). We subsequently incorporated the effects of both competition 
and positive interactions by modifying these probabilities depending on the 
species identities of co-occurring individuals (Supplementary Appendix 3). That 
is, individuals of dominant species reduce the probability of reproduction and 
colonization, while increasing the death probability, of co-occurring individuals 

of subordinate species. Benefactor individuals have the opposite effects on the 
probabilities of beneficiary individuals (Supplementary Fig. 3a,b).

We further incorporated the effects of dissimilarities in habitat preferences by 
setting four habitats preferred by different groups of species (Supplementary  
Fig. 3c). Specifically, the probabilities of reproduction, survival (that is, 1 minus 
the death probability) and colonization in non-preferred habitats were multiplied 
by a habitat tolerance coefficient, β, ranging between 0 (null tolerance) and 1 (total 
tolerance; Supplementary Appendix 3). Hence, when β = 0, individuals are highly 
specialist and only allowed to reproduce, survive or colonize in the preferred 
habitat, whereas β = 1 corresponds to a neutral habitat scenario.

We ran simulations following six hypotheses explaining species assembly and 
coexistence (Fig. 3 and Supplementary Appendix 3): (1) a neutral interaction model, 
where all species were ecologically equivalent9; (2) a hierarchical competition 
model with one strong competitor; (3) an intraspecific density-dependent model, 
where superior competitors suffer more from intraspecific competition5; (4) a 
model incorporating intransitive competition26, where the superior competitor is 
outcompeted by three species, which, in turn, outcompete all species except specific 
pairs (that is, theoretically promoting the generation of empirical association 
patterns; see Supplementary Appendix 3); (5) a nurse model7 with four superior 
competitors, three of which facilitate different pairs of subordinate species; and (6) 
a model reflecting positive interactions within three groups of three rare species. 
Fourteen additional matrices with different settings to these six general models were 
also explored (see Supplementary Appendix 3 and Supplementary Fig. 4).

Simulations were run using a wide range of combinations (n = 216) where 
demographic rates (that is, reproduction, mortality and dispersal) had different 
relative importance (Supplementary Appendix 3.4). In addition, we also used five 
values of the habitat tolerance parameter (β). For each interaction matrix and 
parameter combination, we ran 25 replicates of 5,000 iterations each. We quantified 
the probability of simulated association networks showing empirical patterns (that 
is, differences between positive and negative networks in connectivity, abundance-
species degree relationship, abundance and modularity), as well as the probability 
of persistence of all species (that is, non-extinction), as the proportion of all our 
replicates showing these patterns. Finally, these probabilities were averaged across 
the parameter space defined by demographic rates where the ‘competition’ model, 
under neutral habitat preferences, fulfilled the expectations from the competitive 
exclusion principle (that is, weak competitors went extinct; Pnon-extinction = 0; see 
Supplementary Appendix 3 and Supplementary Fig. 5).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The dataset used in this study is freely available at https://doi.org/10.6084/
m9.figshare.9906092.

Code availability
The R scripts used in this study are freely available at https://doi.org/10.6084/
m9.figshare.9906092.
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Extended Data Fig. 1 | The differences between positive and negative network properties were in general unaffected by sampling effort, null model 
degrees of freedom, species richness, latitude, longitude or taxa. Generalized linear model summary statistics including explained deviance (Dev. expl.) 
for each model. Connectivity (P < N): Probability of negative networks to be more densely connected than their positive pairs. Abundance-degree (P < N): 
Probability of dominant species to monopolizing negative links but not positive ones (that is, a stronger positive abundance-degree relationship in negative 
networks). Abundance (P < N): probability of positive networks tending to be composed of less abundant species. Modularity (P > N): probability of 
positive networks being more modular than their negative pairs.

Nature Ecology & Evolution | www.nature.com/natecolevol

http://www.nature.com/natecolevol

	Positive associations among rare species and their persistence in ecological assemblages

	Methods

	Data acquisition
	Generation of association networks
	Network structure comparison
	Numerical simulations
	Reporting Summary

	Acknowledgements

	Fig. 1 Approaching assembly mechanisms through the lens of positive and negative association networks.
	Fig. 2 The contrasting patterns of positive and negative association networks.
	Fig. 3 Positive interactions among weak competitors alone or together with habitat preferences reproduce realized association patterns.
	Fig. 4 The organization of association networks remains invariant across the globe and regardless of taxa.
	Extended Data Fig. 1 The differences between positive and negative network properties were in general unaffected by sampling effort, null model degrees of freedom, species richness, latitude, longitude or taxa.


