УТВЕРЖДАЮ

Программа вступительного экзамена в аспирантуру 1.5 «Биологические науки» 1.5.16 «Гидробиология»

Федеральное государственное бюджетное учреждение науки Зоологический институт Российской академии наук (ЗИН РАН)

	Должность	Фамилия И.О.	Подпись
Разработано	Зав. отделом	Доронин И.В.	at .
	аспирантуры		A. Comments
Согласовано	Ст. специалист отдела	Гнетнева А.Н.	1
	аспирантуры		W

Санкт-Петербург 2022

1. Гидробиология как наука о надорганизменных водных системах

Место гидробиологии в системе биологических наук. Предмет гидробиологии. Цели и задачи. Основные научные направления и подходы к изучению объекта (описательный, количественный, системный). Научные школы в отечественной гидробиология (Зернов, Скадовский, Зенкевич, Ивлев, Винберг и Алимов).

Понятие о системном подходе. Система и слагающие ее элементы. Понятие об организации систем и особенностях структуры. Изолированные, закрытые и открытые системы. Биологические системы. Системы с активным и пассивным управлением.

Биосфера и ее расчленение на биогеографические регионы. Биогеографический регион как крупномасштабная экосистема. Структура биогеографического региона -локальные биоценозы. Соотношение понятий: биоценоз Мебиуса, биотоп Даля, биогеоценоз Сукачева, экосистема Тэнсли и Эванса. Составные части экосистемы, ее абиотическая и биотическая компоненты. Популяция и трофическая группировка как основные подсистемы биотической компоненты экосистемы. Подходы к изучению водного биоценоза: флоро-фаунистический, биотопический, трофический. Границы биоценозов (дискретность и непрерывность биоценозов). Понятие об экотоне. Энергетически зависимые и независимые сообщества.

Круговорот веществ в экосистемах. Живое вещество, его накопление, состав. Масштабы этого процесса в гидросфере и учение о биосфере В.И. Вернадского. Биогеохимические циклы основных элементов живого вещества: углерода, азота, фосфора, кремния. Синтез и распад органического вещества в гидросфере.

Методы исследования водных экосистем. Задача количественной оценки взаимодействия элементов в системе. Однофакторный и многофакторный эксперимент при получении моделей описания связей в экосистемах с помощью регрессионного анализа в экологических исследованиях. Моделирование как специфический подход в изучении и описании экосистем. Типы моделей., прогностические свойства моделей.

2. Важнейшие факторы внешней среды и реакция на них организмов (проблемы аутоэкологии)

Свет как фактор, регулирующий условия существования и поведения гидробионтов. Фотосинтез продуцентов первичная продукция, связь освещенности с фотосинтезом. Факторы, влияющие на глубину фотической зоны в водоемах. Понятие компенсационной точки фотосинтеза. Эффективность использования световой энергии. Фототаксис животных. Адаптация гидробионтов к изменению интенсивности освещения и спектральному составу. Вертикальные миграции гидробионтов.

Температура как фактор, регулирующий жизнедеятельность гидробионтов. Коэффициент Вант-Гоффа и температурная кривая Крога. Температура и распространение организмов. Стено- и

эвритермные организмы. Тепловодные и холодноводные организмы. Пойкилотермные и гомойотермные организмы. Сезонная динамика температуры. Термоклин.

Соленость как фактор, определяющий распространение гидробионтов. Адаптации гидробионтов к изменению солености. Осморегуляция и понятие критической солености. Эври- и стеногалинные организмы.

Газовый режим. Растворенный кислород и углекислота. Особенности дыхания гидробионтов в воде. Сероводород, его образование и окисление.

Связь между содержанием кислорода, температурой и фотосинтезом. Суточные и сезонные колебания кислорода.

Активная реакция среды, Eh, pH в воде и грунтах. Понятие об окислительновосстановительном потенциале и его влиянии на процессы, связанные с жизнью и активностью гидробионтов.

Гидростатическое давление и его влияние на вертикальное распределение и биологические особенности организмов.

Вода как среда обитания. Химический состав природных вод. Приспособления к водному образу жизни: в толще воды, на поверхности и в толще грунта, в проточных водоемах и в зоне прибоя.

3. Структурные характеристики биотической компоненты экосистемы

Структура популяций, видовая структура сообществ. Олиго- и полимиксные сообщества. Консорции как реальная единица структуры биоценоза (В.Н. Беклемишев, Л.Г. Раменский). Методы количественной оценки структуры (биомасса, число видов, разнообразие связей). Показатели разнообразия и сходства. Урони видового разнообразия. Доминирующие формы, ключевые виды и виды — эдификаторы. Относительное обилие популяций как показатель структуры сообщества. Модели относительного обилия, их ограничения.

Трофическая структура сообществ. Понятие о трофическом уровне и трофической группировке. Продуценты, консументы, редуценты.

Отношения организмов в пределах одной трофической группы. Пищевая конкуренция. Принцип Гаузе, его ограничения. Парадокс планктона.

Отношения организмов различных трофических группировок. Взаимодействия типа хищник - жертва. Опыты Гаузе и математические модели Лотки и Вольтерра. Современные модели трофических отношений. Трофические цепи и сети.

Методы количественных оценок пищевых взаимоотношений организмов в сообществе. Классификация гидробионтов по типу питания. Пищевая избирательность. Рационы, усвояемость пиши. Пространственная структура сообществ. Количественная и качественная неоднородность сообществ, типы пространственного распределения. Факторы и механизмы, обусловливающие пространственную неоднородность планктона и бентоса. Основные деления водной биоты.

Население водной толщи. Планктон и нектон. Вертикальное распределение и миграции гидробионтов. Горизонтальное распределение и активные миграции гидробионтов. Перемещение водных масс и проблема их биоиндикации.

Население границы раздела "вода-воздух". Нейстон, плейстон. Население границы раздела "вода-грунт". Инфауна и эпифауна.

Население грунтов. Инфауна и интерстициальная фауна. Механизмы экспатриации (выноса), миграции и интродукции гидробионтов и проблема перестройки биоценозов. Акклиматизация гидробионтов.

Понятие экологической ниши. Трофический и пространственный аспекты. Фундаментальная ниша Д. Э. Хатчинсона. Потенциальная и реализованная ниша.

Закономерности нишевой структуры сообществ.

4. Функциональные характеристики сообществ

Представления о продукции как о важнейшей функциональной характеристике сообществ. Основные понятия — первичная, вторичная и продукция биоценоза. Удельная продукция (П/Б-коэффициент). Вопросы терминологии (продукция, продуктивность). Выражение продукции в единицах энергии и единицах массы.

Первичная продукция. Фотосинтез и хемосинтез. Валовая и чистая продукция. Особенности процессов создания первичной продукции в наземных и водных системах. Первичная продукция морей, океанов и континентальных водоемов (масштаб и пространственно-временная гетерогенность). Эффективность утилизации солнечной энергии. Световые и темновые реакции фотосинтеза. Связь фотосинтетической активности с факторами среды (свет, минеральное питание, температура, структура водных масс). Фотическая зона: компенсационная и критическая глубины. Методы определения первичной продукции (скляночные методы, по хлорофиллу, по изменению содержания кислорода в фотической зоне, флуоресцентные методы и др.). Чувствительность методов, достоинства и недостатки.

Бактериальная продукция. Численность и биомасса, методы расчета бактериальной продукции. Прямое микроскопирование, содержание АТФ, скорость размножения (время генерации), радиоуглеродные и тимидиновый методы. Бактериальная продукция водной толщи, осадков и обрастании в морях и континентальных водоемах.

Продукция консументов (так называемая "вторичная" продукция). Фитофаги и зоофаги. Методы определения продукции популяций без постоянного пополнения (метод П. Бойсен-Иенсена и его модификации). Расчет продукции популяций с постоянным пополнением (графический, "физиологический" методы расчета), Радиоуглеродные методы. Определение продукции

эксплуатируемых популяций по данным промысловой статистики и учета пополнения. Трофические коэффициенты — K₁, K₂. Оценка продукции различных групп консументов в региональном аспекте.

Деструкция органического вещества. Основные представления о прижизненном распаде органического вещества. Метаболизм и пищеварение как основные функциональные механизмы разрушения органического вещества живым организмом. Их количественная оценка. Связь между интенсивностью обмена и весом тела, методы оценки. Активный, основной и стандартный обмен. Уравнение Берталанфи.

5. Формирование, развитие и устойчивость экосистем

Понятие сукцессии как процесса развития экосистемы. Первичная и вторичная сукцессии, их характерные особенности. Движущие силы и направление сукцессии. Зрелость экосистем и концепция климакса.

Виды сукцессии. Исторические сукцессии и эволюция экосистем. Циклические сукцессии. Сезонные сукцессии и биологические сезоны. Пространственно-динамический аспект развития сообществ пелагиали. Нарушения и восстановительные сукцессии (естественные и антропогенные).

Устойчивость природных экосистем. Различные способы ее оценки. Устойчивость по Ляпунову. Эмпирические подходы. Устойчивость, стабильность и сложность. Гомеостаз системы как основной механизм поддержания устойчивости. Устойчивость экосистем к антропогенному воздействию и концепция предельно допустимого воздействия (ПДВ).

6. Накопление и разрушение (минерализация) органического вещества в экосистеме

Формы существования органического вещества в экосистеме — живое; детрит, взвешенное, растворенное. Количественное соотношение между ними в водной толще и грунтах, пути взаимных переходов. Пищевая доступность органического вещества. Развитие представлений о важности растворенного органического вещества для существования и интеграции водных сообществ. Экологический метаболизм.

Накопление органического вещества в экосистемах. Автохтонное и аллохтонное органическое вещество. Соотношение между ними в экосистемах различного типа. Прижизненные выделения органического вещества растительными и животными организмами, их экологическая роль. Влияние условий внешней среды на интенсивность выделения растворенного органического вещества.

Разложение органического вещества в экосистемах. Прямое химическое окисление органических веществ. Стойкое и нестойкое органическое вещество. Водный гумус. Ферментативный распад, связанный с активностью гидробионтов. Экзоферменты.

Разложение органического вещества при метаболизме и переваривании пища. Связь величины рациона с концентрацией пищи (). Включение в рационы гидробионтов живого вещества, детрита и растворенного органического вещества.

Разложение мертвого органического вещества сапрофитными формами жизни. Роль бактерий, грибов и простейших в экосистеме. Мусорщики и сапрофаги.

Понятие баланса органического вещества в экосистеме. Методы расчета. Пирамида биомасс. Поток энергии через экосистему. Эффективность использования энергии организмами различных трофических уровней. Энергетическая пирамида. Понятие о типах пищевых цепей (пастбищные и детритные), их особенности в разных типах экосистем. Поток энергии через систему по цепи хищник — жертва и по детритной цепи. Понятие «микробиальной петли». Сравнение эффективности использования энергии в системах разного типа..

Степень удовлетворения пищевых потребностей. Напряженность трофических связей.

7. Проблемы частной гидробиологии (типология водоемов)

Классификация водоёмов: океаны и моря, озера и водотоки, водохранилища и пруда. Вертикальная экологическая зональность водоемов, основные черты ее структуры: бенталь моря и океана— супралитораль, литораль, сублитораль (зона шельфа), батиаль (материковый склон), абиссаль (ложе океана), ультраабиссаль (глубоководные желоба). Соответствующие подразделения в пелагиали — эпипелагиаль, мезопелагиаль, батипелагиаль, абиссапелагиаль. Климатическая зональность водоемов -арктическая, бореальная, тропическая, нотальная и антарктическая зоны.

Важнейшие абиотические характеристики водоемов.

Соленость. Классификация водоемов по содержанию соли в воде и фаунистический состав. Соленость и пространственное распределение гидробионтов.

Свет. Солнечная радиация и закономерности распространения света в водной среде. Цветность воды.

Температура. Температурная стратификация, ее сезонная и широтная, изменчивость. Термоклин. Эпилимнион и гиполимнион в озерах. Прямая и обратная температурная стратификация. Типы озер по термическому режиму (тропические, умеренные и полярные). Роль термоклина в существовании сообществ эпипелагиали океана, его "проницаемость" для мигрирующих интерзональных видов.

Особенности термического и солевого режима. ТС-кривые как индикаторы водных масс.

Пикноклин как нижняя граница биотопа фитопланктона в пелагиали.

Водные массы. Течения. Общая схема циркуляции вод в океане. Основные конвергенции и дивергенции. Перемешивание водных масс. Турбулентность. Конвекция и адвекция. Приливноотливные явления. Ветровое перемешивание. Голомиктические и меромиктические озера (по Хатчисону).

Важнейшие биотические характеристики водоемов.

Трофность. Биологическая классификация водоемов: эвтрофные, мезотрофные, олиготрофные, дистрофные.

Продуктивность. Основные представления о продуктивности как важнейшей характеристики водоема. Конечная продукция. Соотношение между первичной и конечной продукциями. Продуктивность водоемов различной трофности. Продуктивные районы морей и океанов, их характеристика. Зависимость продуктивности донных сообществ от продуктивности фотической зоны. Потенциальная продуктивность водоемов и биологические ресурсы океана.

8. Проблемы частной гидробиологии

(особенности пространственной и трофической структуры основных природных экосистем) - Моря и океаны.

Концепция биологической структуры океана. Общие закономерности пространственного распределения жизни в Мировом океане.

Пелагиаль. Фитопланктон. Видовое разнообразие. Закономерности пространственного распределения, сезонной динамики фитопланктона и факторы, их определяющие. Зоопланктон. Видовое разнообразие. Закономерности пространственного распределения, сезонной динамики зоопланктона и факторы, их определяющие. Суточные, онтогенетические и сезонные вертикальные миграции. Биогеографическое районирование пелагиали океана.

Ихтиофауна. Рыбы эпипелагиали, мезопелагиали, глубоководные и придонные. Комплекс неритических видов. Систематический состав и закономерности географического распространения. Роль в трофических цепях пелагиали.

Пелагические сообщества, их структурно-функциональные характеристики. Глубоководные сообщества. Сообщества тропиков, умеренных и полярных районов северного и южного полушарий.

Бенталь. Количественное распределение донного населения в Мировом океане и факторы, его определяющие. Методы количественной оценки. Фитобентос, видовой состав, вертикальная структура и географическая зональность. Зообентос, видовой состав мелководного и глубоководного бентоса. Микро-, мейо- и макробентос. Основные факторы, влияющие на распределение и состав донной фауны. Донная фауна как пищевая база бентосноядных рыб.

Биогеографическое районирование донной фауны Мирового океана. Донные сообщества литорали, коралловых рифов, шельфа, глубин океана. Сообщества обрастаний - перифитон. Видовое разнообразие. Закономерности пространственного распределения, сезонной динамики и факторы, их определяющие.

- Экосистемы континентальных водоемов.

Реки. Масштаб перемещения в Мировой океан речными водами растворенных и взвешенных веществ. Биосток. Условия жизни (турбулентное перемешивание водных масс и выравнивание гидрологических градиентов).

Реопланктон. Доминирующие группы планктона.

Бентос. Лито-, аргилло-, пелореофильные формы. Биогидрологические профили. Перифитон. Растения-эдификаторы и полночленность консорций. Нектон. Проходные и полупроходные рыбы.

Озера. Сточные и бессточные. Конвективное и ветровое перемешивание. Пресные, солоноватые, соленые и гиперсоленные озера. Эстуарии. Лимнобионты (планктон, бентос, макрофиты, перифитон). Доминирующие формы. Сезонные явления, особенности вертикального распределения. Ихтиофауна, озерные, озерно-речные и проходные рыбы.

Болота. Гидрологический и гидрохимический режимы. Основные представители флоры и фауны.

Водохранилища. Особенности гидрологического режима. Колебания уровня и осушная зона. Состав населения. Основные черты сообществ пелагиали и бентали. Стадии формирование экосистем водохранилищ. Проблема эвтрофикации, "цветение" водохранилищ.

Пруды. Плотинные, копаные и наливные. Видовое разнообразие сообществ и продуктивность прудов. Прудовое хозяйство, особенности нерестовых, выростных и зимовальных прудов.

Каналы. Особенности гидрологического режима. Особенности формирования флоры и фауны. Межбассейновые миграции.

9. Проблемы прикладной гидробиологии - Промысел рыбы и гидробионтов.

Промысловая продукция океана. Уровень современного вылова. Состояние и перспективы промысла по регионам и типам объектов (рыбы, беспозвоночные, водоросли и млекопитающие). Промысловая ихтиофауна и ее биогеографические комплексы. Хозяйственное освоение шельфов морей.

Эксплуатация природных сообществ и аквакультура. Гидробионты - объекты аквакультуры.

Промысловая продукция континентальных вод. Удобрение водоёмов и рыборазведение. Акклиматизация кормовых объектов и промысловых организмов.

Растительноядные рыбы.

- Проблема обрастания.

Обрастания судов и технических сооружений. Зарастание водотоков. Меры борьбы.

- Загрязнение водной среды как биосферный процесс.

Основные загрязнители водоемов, их влияние на функционирование и устойчивость водных сообществ. Нефть, тяжелые металлы, пестициды, детергенты, бытовые стоки. Радиоактивное и термическое загрязнения. Принципы биологического мониторинга. Биотестирование, биоиндикация. Токсикологическое нормирование. Предельно допустимые концентрации (ПДК), предельно допустимый сброс (ПДС), ориентировочно безопасный уровень воздействия (ОБУВ) загрязнителей.

- Водоемы как источники питьевого и хозяйственного водоснабжения.

Проблема чистой воды. Биологическое самоочищения водоемов. Организмы — показатели сапробности вод. Охрана водоёмов.

- Рациональное использование биологических ресурсов водоемов.

Проблемы рационального использования биологических ресурсов водоемов и управление их продуктивностью. Регламентация и регулирование промысла. Математическое моделирование динамики численности промысловых объектов. Подходы к управлению биологической продуктивностью водоёмов.

Основная литература:

Алимов А.Ф., Богатов В.В., Голубков С.М. 2013. Продукционная гидробиология. СПб: Наука, 342 с.

Биология океана. 1977. Под ред. М.Е. Виноградова. М.: Наука. Т. 1-2, 800 с.

Богатов В.В., Федоровский А.С. 2017. Основы речной гидрологии и гидробиологии. Владивосток: Дальнаука, 384 с.

Зенкевич Л. А. 1965. Биология морей СССР. М.: Изд-во АН СССР, 740 с.

Константинов А. С. 1967. Общая гидробиология. М.: Высшая школа, 432 с.

Одум Ю. 1975. Основы экологии. М., 741 с.

Романенко В.И., Кузнецов С.И. 1974. Экология микроорганизмов пресных водоёмов. Л., Наука, 194 с.

Федоров В.Д, Гильманов Т.Г. 1980. Экология. М., изд-во МГУ, 464 с.

Хатчисон Д. 1969. Лимнология. М.: Прогресс, 592 с.

Дополнительная литература:

Бергер В.Я. (**Ред.**). 2012. Биологические ресурсы Белого моря: изучение и использование. СПб: Зоологический институт РАН, 377 с. (Исследования фауны морей 69(77)).

Бурковский И.В. 1992. Структурно-функциональная организация и устойчивость морских донных сообществ. М.: МГУ, 208 с.

Виноградов М.Е. 1968. Вертикальное распределение океанического зоопланктона. М.: Наука, 320 с.

Зернов С. А. 1949. Общая гидробиология. М.; Л.: Изд-во АН СССР, 558 с.

Киселёв И. А. 1969. Планктон морей и континентальных водоёмов. Л.: Наука, Т. 1-2, 658 с.

Монаков А.В. 1998. Питание пресноводных беспозвоночных. М.: РАН, 319 с.

Меншуткин В. В. 1971. Математическое моделирование популяций и сообществ водных животных. Л.: Наука, 198 с.

Разумовский С. 1999. Избранные труды. М.: KMK Scientific Press, C. 5–16.

Скадовский С. Н. 1955. Экологическая физиология водных организмов. М.: Советская наука, 338 с.