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Effects of Amplitude-Frequency Characteristics
of a Noise-Masked Test Stimulus on the Shapes

of Visual Evoked Potentials
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Visual evoked potentials produced in response to a reversive checkerboard pattern presented in conditions
of additive noise were recorded. Changes induced by noise in both the shapes of evoked potentials and the
structure of the test stimulus were compared. The nature of changes in the shapes of evoked potentials was
found to correlate with the nature of changes in the amplitude-frequency spectrum of the stimulus. These
results support the gestalt psychology point of view that the visual system uses spatial frequency rather
than discrete means for describing information.
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Gestalt perception is a poorly studied phenomenon. In
engineering psychology, there are different views as to the
extraction of figures from the background (signal from
noise). The literature contains a comparative review of
existing approaches and the concepts based on them [19].
More detailed information on individual approaches have
been presented in [7, 15, 21]. Within the framework of these
approaches, numerous models of perception have been
developed, differing in terms of their underlying algo-
rithms. However, an algorithm is a sequence of actions, and
it is known that a given result can be obtained by different
means. The sequence and number of steps used by the visu-
al system for information processing are also important. It
is vital to know which class of mathematical descriptions of
images is used in gestalt perception.

The whole multitude of possible mathematical
descriptions of images can be divided into two groups —
arithmetical and geometrical. The latter can in turn be divid-
ed into local geometrical and global geometrical descrip-
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tions. Thus, three classes of possible mathematical descrip-
tions are obtained. In accordance with these classes, all
existing models of visual perception are also divided into
three groups: “sample comparison” models, local features
models, and spatial frequency models [7].

“Sample comparison” models. A typical example of
a mathematical description is the representation of images
in computers. An image is divided into points (pixels), each
of which is characterized by coordinates (XY) and bright-
ness (L). This is a graphical image form, which a person
sees on a computer screen. The same image in the comput-
er memory consists of a two-dimensional matrix of num-
bers. Each number in the matrix corresponds to brightness,
while the row and column numbers indexing the number
correspond to the coordinates of the pixel.

In “sample comparison” models, the brightnesses of
image points are taken as features [7]. The working princi-
ple of these models consists of a point-by-point comparison
of a noise-masked figure with reference images stored in
memory, followed by decision taking with respect to iden-
tifying which reference image generates the smallest differ-
ence [13, 22]. The sample comparison procedure is very
simple: the matrix of the second image is subtracted from
the two-dimensional number matrix of the firest image. The
extent of the difference between the images can be
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Fig. 1. Extraction of Fourier spectra. A) Examples of one-dimensional (left) and two-dimensional (right) signals; B) incomplete series of
components of these signals consisting of sinusoidal Fourier components. Numbers indicate the frequencies of the components (number
of periods in signal); C) graphical representation of the incomplete set of Fourier components of both signals in the form of amplitude-
frequency Fourier spectra. For explanation see text. A and B are adapted from [6] with alterations.

expressed, for example, as the sum of the squares of the dif-
ferences between all correlating comparison points in the
matrix. A simulation has demonstrated that the average
recognition results using “sample comparison” models for
images of noise-masked figures is consistent with the aver-
age results of recognition of these same figures by trained
observers [13].

Local features models. A characteristic of local geo-
metrical descriptions is that the image is divided not into
pixels, but into consistent geometrical outline elements. The
figure outline is usually described using geometrical fea-
tures of different views, for example, the convexity/concav-
ity of the curve of a part, the straightness/curviness of an
interval; the smoothness/sinuosity of the curve of a part, etc.
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Each geometrical feature is assigned a mathematical code.
That is, a local geometrical description of an image is math-
ematically a matrix of codes. Examples of matrixes of this
type are presented in [8].

This approach to description has advantages over the
point-by-point approach in terms of compactness, as the
number of local geometrical features in the image is much
smaller than the number of pixels [2, 8]. However, local geo-
metrical descriptions are entirely unsuitable for object per-
cepts. Firstly, there are no universal features suitable for
images of any object. For example, convexity/concavity is
not applicable to objects with a predominance of rectilinear
parts in the outline. Secondly, most geometrical features are
not subject to formalization [7]. Furthermore, there is no
agreement in selecting a set of features and rules for combin-
ing them [19]. As a result, none of the models of perception
based on local geometrical descriptions is used in practice.

Spatial frequency models. An example of global
geometrical image descriptions is provided by the spatial
frequency Fourier spectrum. Unfortunately, the Russian lit-
erature contains virtually no descriptions of the structures
of Fourier spectra (the exception is [11]), so further under-
standing requires detailed consideration of this means of
image description.

Any image can be regarded as resulting from the sum-
mation of sinusoidal components called gratings. Each grating
is characterized by a spatial frequency (the number of periods
per image or the width of the observer’s field of view), the
amplitude (contrast), and the phase. Resolution of the function
into its sinusoidal components is called spectral analysis.
Spectral analysis of one-dimensional and two-dimensional
signals (mages) does not differ fundamentally.

Figure 1, A shows a one-dimensional rectilinear signal
(left) and a black-and-white pattern (right). This pattern
has a rectilinear brightness profile analogous to the profile
of the signal shown at left. The only difference in the
images is that one is two-dimensional. The Fourier compo-
nents of both signals are shown in Fig. 1, B in order of
increasing frequency. In both cases, there are no compo-
nents with even frequencies, which is a characteristic fea-
ture of these signals, but is not a general rule (most images
have complex spectra). Gratings, unlike the Fourier com-
ponents of one-dimensional signals, are, firstly, two-dimen-
sional, and secondly, are characterized by an additional
parameter — orientation. This pattern is described by grat-
ings of a single orientation: 0° (180°).

The set of Fourier components of the signal is shown
graphically as a spectrum. In the case of one-dimensional
signals, the abscissa shows frequency and the ordinate
shows amplitude (Fig. 1, C, left). This type of spectrum is
called an amplitude-frequency spectrum. The correspond-
ing image spectrum is two-dimensional, as, apart from fre-
quency and amplitude, it reflects the orientations of Fourier
components. Thus, each Fourier component is represented
on the spectrum as a point (Fig. 1, C, right).

The Fourier spectrum of an image is presented in polar
coordinates. The origin of the coordinates is located in the
center of the spectrum. The higher the frequency of the
Fourier component, the further from the center the point
corresponding to this component is plotted. The brightness
of the point is proportional to the contrast of the grating.
The angle formed by this point, the coordinate origin, and
the horizontal depends on the orientation of the grating. As
all the gratings in this example have the same orientation,
all the points on the spectrum are located along a single
line, corresponding to an orientation of 0° (180°). Phase
Fourier spectra are also plotted, where the amplitude is
replaced by the phase values of the Fourier components.

The aim of the present work was to identify which
description — point-by-point or spatial frequency — is
reflected by visual evoked potentials in response to stimuli
presented in conditions of additive halftone noise. Noise
introduces changes, which are not seen by ‘“sample com-
parison” models but induce significant alterations to the
amplitude-frequency spectra of the images presented. When
visual evoked potentials are reflected by point-to-point
stimulus descriptions, these changes will not lead to any
significant changes in the shapes of potentials. If the evoked
potentials are reflected the spatial frequency description,
the shapes of potentials will change significantly when the
parameters of noise change, and the nature of these changes
will correlate with the nature of the changes in the ampli-
tude-frequency spectrum of the stimulus. Thus, the task
before us included comparison of the changes caused by
noise in the shapes of visual evoked potentials and in the
structure of the pattern presented to the subjects.

The complete Fourier spectrum (including the ampli-
tude and phase parts) was not addressed in this study, as it
is equivalent to a point-by-point description of an image [7].
Comparison of results obtained in experiments with com-
plete Fourier spectra [10] and data obtained by testing an
“sample comparison” model [13] indicate that both descrip-
tions have identical advantages and disadvantages. Phase
Fourier spectra, unlike amplitude spectra, carry information
relating to the concrete spatial position of each element in
an image [27]. Thus, the appearance in an image of even a
small element of noise leads to significant changes in the
whole of the phase spectrum. That is, the phase part of the
spectrum is fundamentally unsuitable for use in models for
the extraction of a signal from noise. This is not the case
with amplitude-frequency spectra. The amplitude-frequen-
cy characteristics of test stimuli correlate significantly with
the thresholds of the overall perception of fragmented
images. In formal mathematical terms, fragmentation is
equivalent to superimposing a multiplicative mask with
apertures onto a figure [18].

As regards models operating with local geometrical
descriptions, methodological considerations make them
unsuitable in situations in which the object is partially
obscured by noise. Comparison of matrixes of object fea-
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Fig. 2. Test stimuli and their two-dimensional amplitude-frequency spectra. A) Checkerboard pattern without noise;
B, C) checkerboard patterns on the background of noise with element sizes of 3 and 24 pixels respectively. Spectra

are shown at right. For explanation see text.

ture codes are performed by working round the outline,
which must be a closed line [2, 8]. Noise not only obscures
part of the object, but also breaks up its outline. Thus,
adherents to models using local geometrical features take
the view that the visual system performs preliminary spatial
frequency processing of the image to extract the object’s
outline. Only then are algorithms operating with local geo-
metrical features triggered [17, 26].

METHODS

A total of nine subjects aged 19-25 years took part in
the study, and all had normal visual acuity.

Recording of visual evoked potentials. Visual evoked
potentials were recorded using a Telepat 01 encephalograph
with programs by Yu. D. Kropotov and V. A. Ponomarev,
Institute of the Human Brain, and S. V. Pronin, I. P. Pavlov
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Institute of Physiology. The signal was passed from the out-
put of the amplifier (bandpass 0.5-30 Hz) via an analog-to-
digital converter with a sampling frequency of 250 Hz to a
computer. Recording was performed from occipital lead Oz
relative to combined ear electrodes. Stimulation was per-
formed using a 17” Sony Trinitron monitor located 1.6 m
from the subject.

Stimuli consisted of a black-and-white checkerboard
pattern (20 x 20 cells) of size 8.57°. The cell size in the pat-
tern corresponded to a spatial frequency of 1.22 cycles/®
(Fig. 2, A). The contrast of the pattern was determined
using the Michaelson equation — (Ly,.x — Linin)/(Limax Lmin)»
where L, and L,;, are the maximum and minimum
brightness values — was 0.64. The subject was told to fix
the gaze on a black spot located at the center of the moni-
tor. The checkerboard pattern was presented binocularly 50
times in a reversion regime (at a frequency of 1 Hz) on a
uniform background and on the background of additive
noise. The noise was stationary, i.e., did not change on
reversion of the test stimulus.

Five types of noise were used, with different element
sizes: 3, 6, 12, 24, and 48 pixels (9.30, 4.65, 2.33, 1.16, and
0.58 cycles/®, respectively). Checkerboard patterns with
addition of two of these noises are shown in Fig. 2, B, C.
Noises were synthesized using a computer simulation pro-
gram. The only controllable noise parameters (apart from
element size) were contrast (0.3 in all cases) and probabili-
ty (50% in all cases). Constant mean image brightness was
produced by the program at different noise parameters.

Thus, with different noise element sizes, 50% of the
pattern area was always noise-free and the mean brightness
of the noise-masked surface was always identical. In these
cases, differences between noise-masked and non-noise-
masked images were always constant for “sample compari-
son” models regardless of noise element size.

Visual evoked potentials to checkerboard patterns
without noise and evoked potentials to noise-masked
checkerboard patterns (individually for each noise) were
averaged separately for each subject. Differences in evoked
potentials were assessed using correlation coefficients and
mean square differences at each point. Significant differ-
ences in the main components of evoked potentials were
compared using the Wilcoxon T test. Critical values for tests
were taken from biometric tables [14].

Construction of Fourier spectra of images. Spatial
frequency spectra of images were obtained using a program
developed by V. B. Makulov and V. N. Pauk at the S. I. Va-
vilov State Optics Institute. Images were transformed into
the two-dimensional spatial frequency spectrum by the pro-
gram using a fast Fourier transformation algorithm. Drops
in the amplitude of the Fourier components at low and high
frequencies were by two orders of magnitude, and decreas-
es in amplitude from low to high spatial frequencies
occurred very sharply. As a result, the overall spectrum
appeared black with the exception of a small white spot at

the center. Spectra were therefore presented by applying an
equalization procedure (logarithmic smoothing) to the
amplitude. As a result, the spectral components of the spec-
tra shown in Fig. 2, right appear white.

One-dimensional sections were extracted from one-
dimensional spectra at the main orientations: 0°, 45°, 90°,
and 135°. Sections corresponding to the diagonals of the
spectrum (45° and 135°) were averaged separately, as were
sections with the horizontal and vertical components of the
spectrum (0° and 90°). Thus, the two-dimensional ampli-
tude-frequency spectra of test images were presented in
one-dimensional form as two sections corresponding to the
main orientations.

RESULTS

Electrophysiological studies. Averaged (for all sub-
jects) evoked potentials recorded in response to the checker-
board pattern presented in conditions of noise and a uniform
background are shown in Fig. 3, along with results obtained
from comparisons. Visual evoked potentials to the non-
noise-masked pattern consisted of five main components:
two positive components with latent periods of 124 (P124)
and 252 msec (P252) and three negative components with
latent periods of 92 (N92), 172 (N172), and 352 msec
(N352). These evoked potentials were comparable with the
evoked potentials obtained in response to presentation of
the same checkerboard pattern in conditions of additive
noise (Fig. 3, A-D, left).

Significant differences in visual evoked potentials to
noise-masked and non-noise-masked patterns were seen for
negative components N92 and N172 with all noises used in
the present study (Table 1). The amplitudes of the negative
components were found to change when the size of the noise
elements changed, which is clearly evident in the example of
component N92. This component completely disappeared in
the presence of noise with an element size of three pixels
(Fig. 3, A). It appeared in the presence of six-pixel noise,
though its amplitude was very low. Further increases in noise
element size were accompanied by gradual increases in the
amplitude of the N92 component, though it remained signif-
icantly smaller with a noise element size of 48 pixels than in
the absence of noise (Fig. 3, D).

This time pattern of differences in response to changes
in the characteristics of noise was also demonstrated by
other the other components of evoked potentials which
were compared. Figure 3, A—-D shows plots of the squares
of the differences at each point in the visual evoked poten-
tials being compared. The plots clearly show four peaks, the
first three of which have latencies corresponding to those of
the negative components of the evoked potentials to the
non-noise-masked pattern, N92, N172, and N352, respec-
tively, while the fourth peak did not correspond to any of its
components (it was an unidentified component). The plots
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Fig. 3. Differences in evoked potentials to patterns with and without noise. Noise element sizes: 1) 3 X 3; 2) 6 X 6; 3) 12 x 12; 4) 24 x 24; 5) 48 x 48
pixels. The abscissas of all plots show time, msec; the ordinates of the plots to left show evoked potentials to noise-masked (dotted plots) and non-
noise-masked (continuous plots) checkerboard patterns (uV); the ordinates of the plots at right show the squares of the differences at each point of
the evoked potentials being compared. Significant intervals at a significance level of 5% are shown for the N92 component.

show that the greatest differences were characteristic of the
early components. However, in the presence of noise with
the biggest element size used here (48 pixels), the magni-
tudes of the difference in the amplitudes for all visual
evoked potential components became essentially identical.

The mean square difference characterizing the total differ-
ence in the shapes of the evoked potentials being compared
decreased monotonously as noise element size increased
(Table 2). Correlation analysis also demonstrated a
monotonous increase in the similarity of evoked potentials
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TABLE 1. Wilcoxon T Test Values for the N92 and N172 Components of Visual Evoked Potentials Under Comparison

689

Noise element size, pixels 3x3 6X6 12x 12 24 x 24 48 x 48
N92 0 2 0 1 4
VEP component
N172 0 3 3 4 5
Note. For a sample set of n =9, TsT values were 8 and 9 at significance levels of 1% and 5%, respectively.
TABLE 2. Statistical Similarities and Differences in Visual Evoked Potentials to Noise-Masked and Non-Noise-Masked
Checkerboard Patterns for Different Noises
Noise element size, pixels 3x3 6X6 12x12 24 x 24 48 x 48
Correlation coefficient, R 0.59 0.67 0.70 0.77 0.83
Mean square difference 42.87 30.12 28.93 27.37 19.51

to noise-masked patterns with evoked potentials to the non-
noise-masked as noise element size increased (Table 2).

Image studies. One-dimensional profiles of amplitude-
frequency spectra of noise-masked checkerboard patterns
are shown in Fig. 4, A. This shows that spectrum shapes
were not identical in different orientations. The spectrum of
the checkerboard pattern itself had no horizontal or vertical
components, so the horizontals and verticals of the spectrum
of the noise-masked pattern only contain noise. The diago-
nal components of the spectrum of the noise-masked pattern
contained spatial-frequency components of both the pattern
and the noise. The checkerboard pattern was characterized
by a periodic brightness profile, so the energy distribution
across its spectrum was banded. The first component (har-
monic) of the checkerboard pattern had a spatial frequency
of 1.22 cycles/°, which was determined by the size of the
cells in the pattern. The other components of the pattern
were odd harmonics (3.66, 6.10, ..., 18.30 cycles/°). The
brightness distribution by area occupied by noise was aperi-
odic, so the spectrum was not banded. However, because of
the predominance of elements of a single size in the noise,
its spectrum contained elevations, reaching peaks corre-
sponding to the odd harmonics.

Differences in the spectra of the noise-masked and non-
noise-masked patterns were assessed using only the mean
square differences presented in Table 3. These data show that
increases in noise element size were accompanied by a
monotonous increase in the difference between the spectra
of the noise-masked and the non-noise-masked patterns.

A further characteristic of the noises used here is the
non-uniform distribution of their Fourier coefficients for
different orientations of the spectrum: it is evident from the
plots in Fig. 4, A that in the diagonal orientations, noise is
much less apparent than in the horizontal and vertical ori-
entations. The width of the noise-masked range in the diag-
onals of the spectra decreased with increases in noise ele-
ment size. In Table 4, mean noise amplitudes in the ranges

located between the harmonics of the checkerboard pattern
are given for the diagonals of the spectrum (averaging
allows reliable determination of the upper limit of the spec-
tral range occupied by each of the noises).

Comparison of electrophysiological and image
results. As noise element size increased, the evoked poten-
tials to noise-masked checkerboard patterns became more
similar to evoked potentials obtained in response to presen-
tation of the non-noise-masked pattern. However, the mean
square difference of the spectra of the noise-masked and the
non-noise-masked patterns increased. The widths of the
noise-masked range in the horizontal and vertical orienta-
tions was constant, and the noise occupied the whole range
of the spectrum of the pattern (Fig. 4, a, left).

However, the width of the diagonals of the spectrum
occupied by noise was very consistent with the electrophys-
iological results. Figure 4, B compares plots demonstrating
changes in this characteristic and the magnitudes of differ-
ences between evoked potentials with increases in noise ele-
ment size. It is clear that the nature of changes in the struc-
ture of the spectrum of the pattern corresponds to the nature
of the changes in the differences between the shapes of the
evoked potentials as a whole. Thus, additive noise leads to
significant changes in the shapes of evoked potentials, the
extent of which corresponds to the magnitude of the range of
the spectrum of the pattern occupied by noise.

DISCUSSION

The data obtained here provide evidence that visual
evoked potentials reflect a geometrical rather than an arith-
metical description of the stimulus. This is also indicated by
data from other electrophysiological investigations. Visual
evoked potentials to inverted and non-inverted patterns are
known not to show significant differences. A similar con-
clusion was drawn for visual evoked potentials to mirror
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Fig. 4. Comparison of changes introduced by noises to the shapes of evoked potentials and stimulus spectra. A) Amplitude-frequency spec-
tra of noise-masked checkerboard patterns. Noise element sizes: 1) 3 X 3; 2) 6 X 6; 3) 12 X 12; 4) 24 x 24; 5) 48 x 48 pixels. The abscissas
show spatial frequency, cycles/°; the ordinates show amplitude, arbitrary units. Left: averaged verticals and horizontals; right: averaged diag-
onals of spectra. Checkerboard pattern components are shown in gray and noise components in black. B) Dynamics of changes in the shapes
of evoked potentials and the diagonal components of the spectrum of the pattern with increases in noise element size. The abscissa shows
noise element size, pixels; the right ordinate shows the width of the range of the diagonals of the spectrum occupied by noise, cycles/° (dotted
plot); the left ordinate shows squares of the differences between the evoked potentials to the noise-masked and non-noise-masked patterns
(continuous plot).

reflections of images [33]. Electrophysiological studies in evoked potentials. It should be noted that amplitude-fre-
which stimuli are presented in a reversion regime therefore quency spectrum is invariant to image reversion, which is
generally involve averaging of the left and right parts of the not the case for arithmetic descriptions.
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TABLE 3. Mean Squares of Differences between Spectra of Noise-Masked and Non-Noise-Masked Checkerboard Patterns for
Different Noise Element Sizes
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Noise element size, pixels 3x3 6X6 12x 12 24 x 24 48 x 48
0 and 90° 2.82 7.66 11.55 31.04 59.39
Orientation
45 and 135° 1.83 4.33 7.26 16.44 30.54
TABLE 4. Distribution of Noise Energy in the Diagonal Orientations of the Spectrum of the Noise-Masked Checkerboard Pattern
Noise element size, pixels 3x3 6X6 12x12 24 x 24 48 x 48
0.61 2.28 5.50 9.94 17.61 22.89
2.44 2.16 4.11 5.13 1.61 0.53
4.88 2.26 2.58 0.05 0.21 -
Centers of 7.32 1.42 0.53 0.13 - -
diagonals,
cycles/® 9.76 1.32 - - - -
12.20 0.47 - - - -
14.64 0.03 - - - -
17.08 - - - - -

For “sample comparison” models, inversion of the
stimulus makes it “unrecognizable.” This is illustrated in
Fig. 5, A. The image of the white square on a black back-
ground (the image) is compared point by point with three
other patterns: a point-by-point copy of the image, the
image of a white circle on a black background, and an
inverted copy of the image. Comparisons were performed
using the “sample comparison” model included in Adobe
Photoshop (the “difference” procedure). Subtraction of the
arithmetic matrix of the first pattern from the matrix of the
image gives only null values, as the two images are identi-
cal. The resulting matrix on the monitor is apparent as a
completely black image, as the brightness value 0 corre-
sponds to the black color. A different result is obtained by
comparison with the image of the second pattern. Some of
the corresponding pixels in this image have brightness 0
(0 = black, 255 = white). Thus, after subtraction of the
matrix of the pattern from the matrix of the image, some of
the resulting arithmetic values will be 255 (the sign of the
difference is disregarded). Correspondingly, the total
brightness of the resulting image differs from the null.
However, the greatest difference from the image is obtained
with the third pattern. That is, a figure of the same shape
and size as the image differs from it more than the figure of
a different shape because of the differences in the bright-
nesses of the corresponding points. Models operating with
arithmetic descriptions to not “see” shape.

Thus, if the visual system operates with arithmetic
descriptions of objects, then the left and right parts of the
evoked potentials to the reversive stimulus must differ,

which is not seen in practice (see above). The gestalt per-
cept is invariant to absolute brightness values. For example,
Lashley’s studies [31] involved training of rats to select one
of two figures presented and to avoid the other (Fig. 5, B,
above). After the skill was stably fixed, the rats were pre-
sented with another pair of figures with different bright-
nesses compared with the figures of the first pair (Fig. 5, B,
below). The previously acquired reaction was found to be
transferred quickly to the new figures.

Gestalt psychology, which before the appearance of
engineering psychology attempted to seek mathematical
means of describing the phenomena of perception [1], ini-
tially came out against arithmetical descriptions. A human
perceives an object rather than a set of points with different
brightnesses. Point-by-point descriptions are no more than
a mosaic of unconnected elements (inert atoms) [29, 34].

Engineering psychology, closely associated with cog-
nitive psychology, was also against point-by-point descrip-
tions, as they lack any recognition of a “pathway” to being
combined. For example, the junction points in the image of
a cat’s head shown in Fig. 5, C can be combined such that
the resulting shape is completely unrecognizable [2].

Associative psychology, the underlying concept of
which is the “sample comparison” model, did not agree
with this position. It took the view that the elements of a
mosaic are combined into a gestalt by associations [3], i.e.,
by temporal links. Gestalt psychology in turn denied the role
of associations in the gestalt percept [29]. The image even of
a not particularly complex visual scene can contain several
objects. If the visual system is based on point-by-point
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B) Tllustration of the invariance of the gestalt percept to stimulus brightness. Above: stimuli for which positive (“+”) and negative (“-") reactions
generated reinforcements. Below: stimuli to which rats were able to “transfer” the corresponding reactions without reinforcement (from [31]).
C, D) Illustrations of the ambiguity of point-by-point descriptions; C) images of “Attneave’s cat,” consisting of corner points (above) or angles
(below) and possible ways of combining them (from [2]); D) illustration of the Kanysza paradox (from [24]). For explanation see text. E) Examples
of punctate images used by gestalt psychologists to illustrate one of the rules of gestalt perception, the “nearness rule.” There is a link between
close-lying elements which combines them into a single gestalt. For example, the result of this linkage is that figure vi is always perceived as a set
of columns and figure vii as a set of rows (from [34]).
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descriptions, then the simultaneous perception of such a
scene will involve the linkage of all its elements by associa-
tions. This is illustrated by the Kanysza paradox (Fig. 5, D):
the matrix shown at left potentially contains an enormous
number of different shapes, for example the figure shown in
Fig. 5, D at right [24]. If the visual gestalt percept depend-
ed on associations, a human would see anything he wanted
to see in this matrix.

However, there are images which are initially present-
ed in point-by-point discrete ways. This does not apply only
to computer and television images and typographic repro-
ductions, but even to photographs, whose discrete nature
arises from the graininess of the light-sensitive material.
This led to the criticism of gestalt psychology that in criti-
cizing arithmetical descriptions, it did not take account of
the discrete (pixel) nature of many images perceived by
humans without any difficulty [24].

Kliks made a more general comment in addressing
gestalt psychology. He pointed out the fact that the retina is
a mosaic of receptors. Therefore, all stimuli falling on the
retina and having physiological actions are accumulations
of punctate and identical particles distributed as mosaics
and unconnected to each other [12]. That is, the image of
the object at the input of the visual system is a point-by-point
description. And this, in the framework of gestalt psycholo-
gy, is not suitable for the perception of shapes.

Both comments could also be directed against engi-
neering psychology, which is dominated by the concept that
perception uses local geometrical descriptions. However,
engineering psychology avoided this criticism, by taking the
so-called computational approach to visual perception as its
main approach, as developed by Marr. This approach is
based on Gibson’s ideas regarding the restoration of the
“pure” properties of three-dimensional objects by the visual
system [19]. Gibson’s view was that the perception of any
two-dimensional image is not unique. Even an image
formed by the optics of the eye on the retina has no rela-
tionship to perception, as the visual system gathers informa-
tion directly from the light stream [5] (however, these ideas
of Gibson were not discussed in [17]). Thus, the computa-
tional approach derives discrete images from its studies.

At first sight, gestalt psychology holds contradictory
positions. On the one hand, in gestalt theory, the shape
(gestalt) is regarded as an objective reality; it does not
impose reasoning on sensory elements, but extracts the per-
cept from the background [16]. However, filtered by the
mosaic “sieve” of the retina, it should disappear in accor-
dance with the views of gestalt psychology of arithmetical
descriptions. Gestalts should also be absent from punctate
images. However, the gestalt is somehow present in the per-
cept although, from the gestalt psychology point of view, it
cannot be synthesized de novo. The gestalt theory denies
the existence of any kind of synthetic (or analytical) process
in perception [3]. Everything we perceive is already present

in our sensations, so there is no need to introduce addition-
al acts of ordering a sensory structure [23].

However, gestalt psychology made no discrimination
between discrete and analog images. As a result, Wertheimer
[34] illustrated gestalt phenomena of perception using punc-
tate, discrete textures (Fig. 5, E). From the point of view of
gestalt psychology, gestalts are also present in punctate
images, though they are obscured by the background. Thus,
the problem of the perception of gestalts is not one of the
discrete nature of images, but one of the form of their
description. The mosaic nature disappears at the very begin-
ning of sensory reception [28], while the representation of
information in the brain is distributed (antilocation or
equipotential) in nature [30]. That is, gestalt perception is
based on some kind of global geometrical description which
can be obtained from an arithmetical description.

This idea can be understood using a simple analogy.
We assume that some algorithm exists to allow unambigu-
ous translation of Russian texts into English and, converse-
ly, from English into Russian. If this hypothetical algorithm
is used to translate a Russian poem, then the rhyme present
in the Russian version will be absent from the English.
However, if the resulting English text is translated back into
Russian, the rhyme will reappear. The rhyme never disap-
peared — it was merely “latent” in the English version of the
text, in the same way that a gestalt is latent in the arithmeti-
cal description.

The mathematical tool proposed by the French physi-
cist Fourier, i.e., Fourier transformation, provides for
unambiguous translation of any function consisting of dis-
crete components into a Fourier spectrum, along with the
reverse translation [20]. That is, it is a method for the direct
progression from arithmetical to global geometrical
descriptions. Unlike arithmetical matrixes, the Fourier
spectrum is a distribution (holographic) description of the
image. Every grating contains some information on every
point in the image. Every point in the image is distributed
over the whole spectrum.

This distribution of information across the spectrum is
not uniform. For example, the low-frequency components
located in the center of the Fourier spectrum carry infor-
mation relating predominantly to the larger details of the
image, while the smaller details are described mainly by
the high-frequency components located at the periphery of
the spectrum. This feature provided an explanation of sev-
eral visual gestalt phenomena in terms of spatial frequency
filtration [25]. The question of extracting gestalts will be
addressed in a separate report. Here we note only that the
extraction of gestalts can occur only by using spatial fre-
quency descriptions. We do not believe that these points
provide adequate grounds for proposing that the visual sys-
tem uses Fourier descriptions of images. Different types of
a single class of descriptions should have common proper-
ties, which must lead to essentially identical results when
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these are used. Thus, the question of the actual form of a
global geometrical description used by the visual system
remains unclear [9, 32].

According to one of the propositions of Aristotelian

logic, arithmetic should not be used to solve geometrical
problems [3]. In arithmetic, unlike geometry, the concepts
of “shape” and “figure” do not exist, so studies and simula-
tions of visual gestalt perception should not use arithmeti-
cal, but rather geometrical descriptions of stimuli. The
results obtained in the present study provide further support
for this view.
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