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Summary

The trypanosomatid flagellates of the genus Phytomonas were found in the salivary 

glands and gut of the invasive western conifer seed bug Leptoglossus occidentalis 

(Hemiptera, Coreidae) in Crimea. The parasites were isolated into axenic culture 

and identified by phylogenetic analysis based on the 18S rRNA and gGAPDH genes 

as P. serpens. Previously, all isolates of this species have been obtained in Brazil, 

from either tomato fruits or their pest bugs Phthia picta (Hemiptera, Coreidae). 

We investigated the morphology of trypanosomatids from the new isolate in the 

host bug, laboratory culture, and experimentally infected tomato fruits using light 

and transmission electron microscopy. We propose hypothetical scenarios of L. 

occidentalis involvement in the life cycle of P. serpens in the territory, which is new 

for both species.

Key words:  invasive species, Phytomonas serpens, Trypanosomatidae, Leptoglossus 
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Introduction

Trypanosomatids (Euglenozoa, Kinetoplastea) 

are represented in the classification of eukaryotes 

by the order Trypanosomatida containing only 

one family, Trypanosomatidae (Vickerman, 1994; 

Simpson et al., 2006; Flegontov et al., 2013; Kostygov 

et al., 2021). The analysis of the evolutionary 

history of systems that include trypanosomatids 

and their hosts based on the data on flagellates’ life 

cycles and the results of phylogenetic, population-

genetic, genomic and other studies indicates that the 

modern diversity of these parasites is based on host-

switching (Hamilton et al., 2007, 2012; Stevens, 
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2008; Maslov et al., 2013; Lukeš et al., 2014, 2018; 

Frolov, 2016; Frolov et al., 2015, 2021). The study 

of this phenomenon appears particularly important 

in the light of the recent global developments such 

as climate change, the environmental effects of 

transport, transformation of ecosystems under the 

increasing anthropogenic impact and so on (Frolov, 

2016). Under these conditions, the ability to make 

horizontal transitions to new hosts offers great 

opportunities to trypanosomatids. By overcoming 

host barriers, they can also expand to new territories 

with their new hosts. Given that trypanosomatids 

include a number of actual and potential pathogens 

of humans, animals and cultivated plants, the phe-
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nomenon of host-switching deserves the closest 

attention.

In this paper, we report the discovery of dixe-

nous flagellates Phytomonas serpens in an invasive 

insect, the western conifer seed bug Leptoglossus 
occidentalis (Heteroptera, Coreidae), in southern 

Russia. The history of expansion of this North-

American bug in Europe and the timeline of its 

progression from west to east is well documented 

(Gapon, 2012). L. occidentalis reached southern 

Russia and Ukraine in 2010, and has more recently 

spread to Krasnodar Territory of Russia. The deve-

lopment of the western conifer bug is closely asso-

ciated with conifers of the families Pinaceae and 

Cupressaceae. The bugs feed on ripe and ripening 

seeds of the conifers and on the sap of their apical 

shoots (Gapon, 2012).

Trypanosomatid flagellates Phytomonas serpens 

parasitize the fruit of tomato (Solanum lycopersicum) 

in Brazil (Jankevicius et al., 1989) and use the bugs 

Phthia picta (Heteroptera, Coreidae) as vectors. 

These bugs feed on various plants but have never 

been recorded to feed on conifers.

Material and methods

Two individuals of Leptoglossus occidentalis 

(both ♂) were caught in a human dwelling in the 

Nikita Settlement, the Republic of Crimea (44° 31’ 

04” N; 34° 13’ 44” E), in November 2020. They 

were denominated as samples Yalt1 and Yalt2. 

The insects were euthanized with the chloroform 

vapors and dissected in saline solution (Frolov et 

al., 2018; Malysheva et al., 2020). The dissection 

and subsequent microscopic examination revealed 

infection with trypanosomatids: flagellate cells 

were found in the gut of both individuals and in the 

salivary glands of the sample Yalt2.

CULTIVATION OF PHYTOMONADS

Fragments of the bug gut infected with trypano-

somatids were placed into 2 ml test tubes (isolates 

Yalt1 and Yalt2) filled to the brim with Schneider′s 

Insect Medium (Sigma-Aldrich, St. Louis, USA) 

supplemented with 10% Fetal Bovine Serum 

(Biolot, St. Petersburg, Russia), 500 µg/ml of 

streptomycin and 500 units/ml of penicillin (Sigma-

Aldrich, St. Louis, USA). Later, after the sustainable 

development of the cultures had been achieved, they 

were maintained without the antibiotic solution 

at the temperature of 22 °C and passaged every 

10-14 days. One culture (Yalt2) was purified from 

fungal contamination using a previously described 

device consisting of two glass tubes with a V-shaped 

cannular connector (Podlipaev and Frolov, 1987).

The two cultures (Yalt1 and Yalt2) were cryopre-

served and stored at -86 °C in the growth medium 

supplemented with 10% DMSO (Sigma-Aldrich). 

The cultures are currently deposited in the Research 

Collection of Parasitic Protists at the Zoological 

Institute of the Russian Academy of Sciences (St. 

Petersburg, Russia).

DNA ISOLATION, AMPLIFICATION, CLONING, AND 

SEQUENCING

Genomic DNA was extracted from the host 

tissues — the infected salivary glands (sample Yalt2-

sg), fragments of the infected gut (sample Yalt1-int), 

and flagellate culture (Yalt2) — using PureLink Ge-

nomic DNA Kit (Invitrogen) for DNA extraction 

according to the manufacturer’s instructions. DNA 

isolated from fragments of the host digestive tract 

(Yalt1-int, Yalt2-sg) was used for amplification 

of the 18S rRNA gene with primers 1127F and 

1958R (generating ~900 bp fragment) (Kostygov 

and Frolov, 2007). The amplicons were sequenced 

using the PCR primers and the resulting sequences 

were used for species identification of parasites from 

these samples.

The nearly full-length SSU rRNA and gGAPDH 

genes were amplified using DNA isolated from the 

culture Yalt2 and the respective primer pairs: S762 

and S763 (Maslov et al., 1996), M200 and M201 

(Maslov et al., 2010). Amplification protocol and 

reaction mixture composition were described earlier 

(Kostygov and Frolov, 2007). Sequencing of the 

amplicons with the PCR primers was performed 

as described previously (Frolov et al., 2019). The 

resulting sequ-ences were used for phylogenetic 

analysis. The GenBank accession numbers for 

the new sequences determined in this work are: 

OM413897-OM413898 (SSU rRNA gene) and 

OM419141 (gGAPDH gene).

PHYLOGENETIC ANALYSES

The sequences of SSU rRNA and gGAPDH 

genes obtained in this study were combined with

those available in GenBank (NR and WGS data-

bases) (Table S1). The alignment of SSU rRNA 
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gene sequences was performed in MEGA7 using 

MUSCLE under the default parameters (Kumar 

et al., 2016). The dataset for gGAPDH gene was 

processed in MEGA7 as follows: translated into 

amino acids, aligned with the built-in MUSCLE 

and then reverse translated to nucleotides.

The maximum likelihood tree reconstruction was 

performed in IQ-TREE v.1.6 (Nguyen et al., 2015) 

with the best evolutionary model (TIM2e+I+G4) 

selected using Bayesian information criterion by 

the built-in ModelFinder (Kalyaanamoorthy et 

al., 2017). Branch support was estimated using the 

ultrafast bootstrap method (1000 replicates) (Hoang 

et al., 2017). Bayesian inference was accomplished in 

MrBayes v.3.2.7 under the GTR+I+G model, with 

analysis run for 2,000,000 generations, trees sampled 

every 1000 generations and other parameters left in 

default states (Ronquist et al., 2003).

The resulting alignment of SSU rRNA gene in-

cluded 42 sequences with 2138 nucleotide sites in-

cluding indels, and the final alignment of gGAPDH

gene included 30 sequences with 887 nucleotide 

sites. The resulting alignment was used for phylo-

genetic inference in IQ-TREE and MrBayes. The 

analyses were done generally as described above 

with the best evolutionary model for the maximum 

likelihood tree (GTR+I+G4+F).

LIGHT MICROSCOPY

The smears prepared from the cultures, from 

fragments of infected gut, salivary glands and from 

infected tomato fruits were air-dried, fixed with 96% 

ethanol for 30 min, and Giemsa-stained for 30 min 

(pH 6.8). To visualize DNA-containing structures, 

the cells were stained with 4’,6-diamidino-2- 

phenylindole (DAPI) (1 mg/ml) as described earlier 

(Yurchenko et al., 2006). Microphotographs were 

taken using Leica DM 2500 microscope equipped 

with UCMOS14000KPA 14-Mpx camera (Toup 

Tek, Hangzhou, China) at ×1,000 magnification. 

All cell measurements (n=27) and the statistical 

analysis were performed in UTHSCSA Image Tool 

for Windows v.3.0. The statistical significance of 

differences in the average values of morphological 

characteristics was evaluated using Student’s t 

criterion (n=27) (significance level of P<0.01).

TRANSMISSION ELECTRON MICROSCOPY

A previously centrifuged five-day culture of Phy-
tomonas serpens (Yalt2) was prepared for TEM as 
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described earlier (Frolov et al., 2016). Ultrathin 

sections were examined in Morgagni 268-D micro-

scope (FEI Company/Thermo Fisher Scientific, 

Hillsboro, OR, USA) with accelerating voltage of 

80.00 kV.

EXPERIMENTAL INFECTION OF TOMATOES

Tomatoes for the experiment were bought in 

the supermarket. Six-day culture of phytomonads 

(~105 cells/ml) was introduced with the help of a 

capillary pipette into the tomato fruit at a depth of 

~3-5 mm. The volume of the inoculant was V = 

0.01 ml. The injection site was marked with a paper 

sticker. After infection, the tomatoes were stored in 

a fridge at +10 °C.

Results

The two individuals of Leptoglossus occidentalis 
(Yalt1 and Yalt2) were dissected and examined 

for infection. Motile promastigotes and immotile 

endomastigotes of trypanosomatids were found in 

the midgut of both individuals (Fig. 1, A, B) and 

in the salivary glands of Yalt2 (Fig. 1, C). Two 

laboratory cultures of trypanosomatids were isolated 

from the infected fragments of the midgut of Yalt1 

and Yalt2 and assigned the same abbreviations as 

their hosts. Xenic culture Yalt1, contaminated with 

fungi, was cryopreserved. The culture Yalt2 was 

purified from concomitant organisms and used in 

further research.

PHYLOGENETIC ANALYSIS

The resulting SSU rRNA gene sequences (~900 

bp fragments obtained from the digestive tract of 

the Yalt1-int and Yalt2-sg specimens, as well as 

a ~2100 bp fragment from a laboratory culture of 

Yalt2) were identified as Phytomonas serpens. The 

resulting sequences of the nearly full-length SSU 

rRNA and gGAPDH genes obtained from the 

culture Yalt2 were used for phylogenetic analysis. 

The phylogenetic inferences based on SSU rRNA 

and gGAPDH genes, the two molecular markers 

traditionally used for trypanosomatids (Votypka 

et al., 2015), reliably demonstrated the position 

of the isolate Yalt2 in the cluster of different iso-

lates of Phytomonas serpens. Both maximum like-

lihood and Bayesian analyses based on these genes 

demonstrated well-supported branches on the phy-

logenetic trees (Fig. 3).
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Fig. 1. Morphology of Phytomonas serpens Yalt2 (light microscopy: Giemsa stained; inset: DIC + DAPI). A, 

B – Flagellates from intestine of Leptoglossus occidentalis; C – flagellates from salivary glands of L. occidentalis; 

D – flagellates from culture Yalt2; E – flagellates from tomatoes. Abbreviations: en – endomastigotes, fl – 

flagellum, kp – kinetoplast, nu – nucleus, p – promastigotes. Scale bars: 10 µm

MORPHOLOGY OF FLAGELLATES

Flagellates Phytomonas serpens Yalt2 were 

found to form heteromorphic populations in all 

investigated cases: (1) in the gut and the salivary 

glands of the host, (2) in laboratory cultures, and 

(3) in the juice of experimentally infected tomatoes 

(see below).

Two main morphotypes of the cells were detec-

ted in all these cases: motile flagellated promastigotes 

(Fig. 1, Table 1) and immotile non-flagellated endo-

mastigotes (Fig. 1, Table 2). Both promastigotes and 

endomastigotes were capable of division. Since the 

cells of the two morphotypes can undergo trans-

formations into each other, many transitional forms, 

differing in the cell size and the flagellum length, 

were always present in the micropopulations.

This flagellate polymorphism correlates with the 

localization of the parasite. In this way, the largest 

promastigotes reaching 50 µm or more (36.1±8.4) 

µm were observed in the salivary glands of the host 

(Table 1). They had a characteristic shape with an 

expanded anterior third of the body and an elongated 

whip-like posterior end (Fig. 1, C). The length of 

their flagella usually did not exceed ¼ of the cell 

length.

Promastigotes from the host gut had a worm-

like body shape (Fig. 1, A, B). Their length was on

average 10 µm less than that of the largest proma-

stigotes described above (25.8±5.1) µm, while the 

length of their flagella was equal to their body length 

(Table 1).

Promastigotes from Yalt2 culture and from 

the juice of tomato fruit experimentally infected 

with this culture (Fig. 1, D, E) were the smallest in 

size, 10.2±2.1 and 12.4±1.7 µm, respectively, with 

flagella of both being approximately of the same 

length as their cells (Table 1).

In salivary glands and the gut of L. occidentalis 
endomastigotes of P. serpens Yalt2 were much 

shorter than promastigotes (Fig. 1, A-C; Tables 

1, 2). However, in Yalt2 culture and in the juice 

of experimentally infected tomatoes (Fig. 1, D, E; 

Table 2) the differences in mean cell length values 

of these two morphotypes were not statistically 

significant (P > 0.01).

The ultrastructure of P. serpens was studied using 

cells from Yalt2 culture (Fig. 2). The organization of 

pro- and endomastigotes was generally similar. The 

main cell organelles, the nucleus and kinetoplast, 

had a structure typical of all trypanosomatids and 

were located along the longitudinal axis of their 

cells (Fig. 2, A-D). The kinetoplast was shaped 

as a slightly concave disc (~ 0.67 × 0.15 µm). The 

nucleus was located behind the kinetoplast. Profiles 

of mitochondria, glycosomes and acidocalcisomes 

were revealed in the cytoplasm (Fig. 2). The main

differences in the morphology of the pro- and endo-
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Fig. 2. Morphology of Phytomonas serpens in the culture Yalt2 (TEM). A, C – Promastigotes, B, D – 

endomastigotes. Abbreviations: ac – acidocalcisomes, fl – flagellum, fp – flagellar pocket, gl – glycosomes, kp 

– kinetoplast, ks – kinetosome, mi – mitochondrion, nu – nucleus. Scale bars: A – 3 µm, B – 2 µm, C – 0.8 

µm, D – 0.6 µm

mastigotes of P. serpens Yalt2 were associated 

with the organization of anterior ends of their 

cells. Promastigotes had a short and rather wide 

cylindrical flagellar pocket (Fig. 2, A, C); its dia-

meter did not exceed 0.8 µm. The flagellum exits 

the flagellar pocket of promastigotes freely, with no 

contacts being formed between the plasmalemma 

of the flagellum and that of the flagellar pocket. In 

endomastigotes, the flagellar pocket was reduced 

(Fig. 2, B, D). The outer opening of the pocket was 

smaller in diameter, and its basal part was fragmented 

(Fig. 2, B) and then resorbed and replaced by finely 

granular matrix of medium electron density (Fig. 

2 D). The flagellar apparatus was also reduced, so 

that only kinetosomes could be seen in the cells of 

endomastigotes (Fig. 2 D).

EXPERIMENTAL INFECTION OF TOMATOES

Six tomatoes were infected with a six-day cultu-

re of Phytomonas serpens Yalt2. In all cases the 

infection was successful. Starting from day 5 post 

infection, a large number of flagellates, both motile 

promastigotes and endomastigotes, were observed 

in tomato juice collected with a sterile capillary. 

Gradually, the flagellates spread throughout the 
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Table 1. Morphometry of P. serpens promastigotes (Yalt2) from different organs of the L. occidentalis,
Tomatoes fruits and culture (N = 27).

Origin of cells Length Width Flagellum Nucleus NA KA NK

Midgut
L. occidentalis

25,8±5,1 1,2±0,2 24,7±5,1 2,6±0,6 5,4±0,9 1,9±0,3 2,8±1,0

(36,8–17,9) (1,7–0,7) (30,9–17,1) (3,2–1,7) (6,8–4,3) (2,6–1,1) (4,4–1,2)

Saliv. glands
L. occidentalis

36,1±8,4 1,8±0,6 8,9±1,9 2,1±0,4 5,5±0,8 1,9±0,3 2,6±0,5

(53,4–19,0) (3,7–1,2) (12,1–5,5) (3,0–1,3) (7,0–3,8) (2,6–0,9) (3,9–1,8)

Tomato fruits
12,4±1,7 1,5±0,2 9,6±4.0 2,0±0,4 2,4±0,8 1,1±0,2 0,9±0,3

(15,4–9,5) (1,9–0,9) (16,4–2,6) (2,9–1,1) (3,4–0,8) (1,5–0,8) (1,4–0,4)

Culture
10,2±2,1 1,5±0,2 12,4±6,0 1,7±0,3 3,3±0,6 1,1±0,2 1,5±0,4

(14,5–4,9) (1,8–1,1) (19,9–2,6) (2,2–1,2) (4,8–2,2) (1,4–0,7) (2,5–0,7)

Notes: NA – The distance between the nucleus and the anterior end of the cell; KA – the distance between the kinetoplast and 
the anterior end of the cell; NK – the distance between the nucleus and the kinetoplast. All the measurements are in μm.

tomato fruit. Live cells were maintained in infected 

tomatoes for up to 3.5 months, until the fruit 

decomposed completely or dried up.

Discussion

Leptoglossus occidentalis Heidemann, 1910 is an 

invasive species of true bugs that originally inhabited 

western North America (Gapon, 2012). In Europe, 

the species was first discovered in Italy in 1999, and 

later on, it spread rapidly across the continent. In 

the south of Russia and in Ukraine, L. occidentalis 

was first noted in 2010 (Gapon, 2012). Recent 

genetic studies of different European populations 

of L. occidentalis have shown that this species is 

most likely to invade new territories by multiple 

introductions (Lesieur et al., 2019). The origin of 

the L. occidentalis population in southern Russia and 

Ukraine is yet unknown. The western conifer seed 

Table 2. Morphometry of P. serpens endomastigotes (Yalt2) from different organs of the L. occidentalis,
Tomatoes fruits and culture (N = 27).

Notes: NA – The distance between the nucleus and the anterior end of the cell; KA – the distance between the kinetoplast and 
the anterior end of the cell; NK – the distance between the nucleus and the kinetoplast. All the measurements are in μm.

Origin of cells Length Width Flagellum Nucleus NA KA NK

Midgut
L. occidentalis

9,0±1,7 1,5±0,2 – 1,8±0,3 3,5±0,6 1,4±0,1 1,5±0,5

(12,1–5,7) (1,8–1,1) (2,3–1,2) (4,7–2,6) (1,7–1,1) (2,8–0,9)

Saliv. glands
L. occidentalis

9,3±1,4 1,6±0,2 – 1,8±0,4 4,0±0,8 1,2±0,5 1,6±0,5

(11,5–6,7) (1,9–1,2) (2,2–1,1) (4,3–2,1) (2,0–0,9) (3,0–0,8)

Tomato fruits
11,6±1,3 1,3±0,2 – 1,7±0,5 2,8±0,4 1,0±0,2 0,9±0,3

(14,4–9,1) (1,6–1,0) (2,3–0,2) (3,9–2,1) (1,3–0,7) (1,5–0,5)

Culture
7,6±1,1 1,4±0,2 – 1,3±0,2 2,4±0,4 0,7±0,2 1,1±0,4

(9,7–5,9) (1,9–1,1) (1,7–0,9) (3,3–1,6) (1,2–0,4) (2,2–0,7)

bug is a polyphagous conifer pest feeding on seeds 

and sap of apical shoots of conifers of the family 

Pinaceae (Abies, Cedrus, Picea, Pinus, Pseudotsuga, 
Tsuga) and the family Cupressaceae (Calocedrus, 
Cupressus, Juniperus). More than 40 species of coni-

fers have been recorded as its forage plants (Werner, 

2011; Fent and Kment, 2011).

Dixenous flagellates of the genus Phytomonas 
are distributed worldwide (Camargo, 1999). An 

overwhelming majority of the currently available 

Phytomonas isolates have been isolated from their 

hosts at the American continent (Jaskowska et al., 

2015). Meanwhile, recent studies have shown that 

the fauna of these flagellates also appears to be 

fairly diverse in the Palaearctic (Seward et al., 2016; 

Frolov et al., 2016, 2019; Ganyukova et al., 2020). 

Phytomonads are parasites of Flowering plants, 

capable of developing in fruits, seeds, the milky 

sap or the phloem of host plants (Camargo, 1999). 

They have been recorded in plants from 24 families 
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Fig. 3. Maximum likelihood phylogenetic trees reconstructed using different molecular markers. A – SSU 

rRNA gene; B – gGAPDH gene. Numbers at nodes indicate posterior probability and bootstrap percentage, 

respectively. Values less than 0.5 and 50% are replaced with dashes. Nodes having 1.0 posterior probability and 

100% bootstrap support are marked with black circles. Double-crossed branches are at 50% of their original 

lengths. The trees are rooted with the sequences of Herpetomonas and Lafontella spp. (shown in grey). The scale 

bar represents number of substitutions per site. Phytomonas serpens Yalt2 is highlighted in bold.

(Jaskowska et al., 2015). However, in the course 

of more than a century of research, phytomonads 

have never been found in conifers. Phytomonas 

spp. is transmitted by phytophagous bugs from the 

families Lygaeidae, Coreidae and Pentatomidae. In 

bugs, flagellates undergo a complex succession of 

developmental stages, successively infecting the gut, 

the hemolymph, and the salivary glands of their hosts 

(Freymuller et al., 1990; Frolov et al., 2016, 2021).

We performed a molecular phylogenetic ana-

lysis of isolate Yalt2 from the invasive bug species L. 
occidentalis in the Republic of Crimea using sequen-

ces of the two molecular markers commonly used 

for trypanosomatids – SSU rRNA and gGAPDH

genes. The results showed that the isolate belonged 

to the species Phytomonas serpens known as “trypa-

nosomatid parasite of tomatoes” (Jankevicius et al., 

1989). The comparison of this nearly full-length 

small SSU rRNA with the sequences from GenBank 

revealed the new isolate was identical to P. serpens 

isolate 9T (WHS sequence) differing only by one 

substitution in the variable region V4 of the gene. 

SSU rRNA sequences of the known Brazilian P. 
serpens isolates have also been shown to differ by 1–4 

substitutions, which may reflect both SSU sequence 

polymorphism and differences between individual

P. serpens strains (Hollar and Maslov, 1997).

Trypanosomatids parasitizing tomatoes became 

known after the pioneering study of Gibbs (1957). 

He found flagellates in the bugs Nezara viridula 
(Hemiptera, Pentatomidae) from the Cape Penin-

sula of the South Africa and in the juice of tomatoes 
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fruit Solanum lycopersicum, which these bugs fed

on. Gibbs (1957) named these flagellates Leptomo-
nas serpens and described the morphology of L. 
serpens from the gut and salivary glands of the 

bugs and from the juice of infected tomatoes. He 

identified two morphotypes of these flagellates in 

both hosts: promastigotes (= leptomonads sensu 

Gibbs) and endomastigotes (= metacyclic form). 

Unfortunately, laboratory culture of these flagellates 

has not been isolated, and nowadays it is not possible 

to unambiguously identify the taxonomic affiliation 

of these trypanosomatids using molecular markers.

Numerous species of both monoxenic trypano-

somatids and phytomonads are known to occur 

and persist in tomato fruit (Conchon et al., 1989; 

Sanchez-Moreno et al., 1995). The species epithet 

“serpens” was used for tomato parasites for a second 

time by Brazilian researchers in Phytomonas serpens 

(Jankevicius et al., 1989). These flagellates are mor-

phologically similar to the trypanosomatids desc-

ribed in South Africa (Gibbs, 1957) and they also

have two hosts in their life cycle: the fruit of tomato

Solanum lycopersicum and the neotropical phyto-

phagous bug Phthia picta (Hemiptera, Coreidae) 

as vectors. The authors obtained axenic cultures 

of P. serpens isolated from both tomato fruit and 

experimentally infected insects (Jankevicius et al., 

1989). Tests with monoclonal antibodies specific 

to the genus Phytomonas (Teixeira and Camargo, 

1989) performed on all isolates confirmed that P. 
serpens indeed belonged to that genus (Jankevicius 

et al., 1989). Later, the number of isolates of this 

species from Brazil increased, and P. serpens became 

a “model” species in diverse trypanosomatid studies 

(Hollar and Maslov, 1997; Camargo, 1999; Alves e 

Silva et al., 2013; Dollet et al., 2012; Kořený et al., 

2012; Verner et al., 2014; Zanetti et al., 2016; dos 

Santos Júnior et al., 2018).

Interestingly, large-scale studies of trypano-

somatid biodiversity using molecular barcoding 

techniques carried out during the last decade 

in tropical and subtropical regions on different 

continents and focused mainly on the identification 

of trypanosomatids from hemipterans have not yet 

revealed the presence of P. serpens in any bug species 

(Maslov et al., 2007; Votýpka et al., 2010, 2012, 

2020; Dollet et al., 2012; Kozminsky et al., 2015; 

Zanetti et al., 2016; Králová et al., 2019; Boucinha 

et al., 2020). Moreover, only isolates from Brazilian 

tomatoes have been attributed to the “serpens” 

group out of all known isolates of phytomonads from 

plants on different continents identified using the 

main marker genes (18S, gGAPDH, SL) (Jaskowska 

et al., 2015).

It is noteworthy that in 1995, in Europe, in the 

south of Spain, the similar flagellates were found

in tomato fruits, and the results of a lectin-agglu-

tination test revealed their belonging to the genus 

Phytomonas (Sanchez-Moreno et al., 1995). How-

ever, a later molecular genetic study of these phy-

tomonads (isolate TCC 305E) showed that they did 

not belong to the group of P. serpens isolates but 

clustered in a separate group together with European 

flagellates isolated from Annona cherimola, Trifolium 

sp. and Amaranthus retroflexus (Serrano et al., 1999; 

Zanetti et al., 2016). To sum up, the species name 

P. serpens has been retained only for flagellates from 

tomato fruit and Phthia picta coreid bugs in Brazil 

(Jankevicius et al., 1989; Jaskowska et al., 2015).

In this study, we provide the first record of P. ser-
pens on the European continent. We showed expe-

rimentally that isolate Yalt2 could infect tomato 

fruit and form stable micropopulations inside, while 

flagellates retain their proliferative activity for a 

long time.

Taking into account that tomatoes are broadly 

cultivated in the south of Russia and elsewhere in 

southern Europe, we can suggest that P. serpens is 

either already distributed in the southern Palaearctic 

region (and has escaped the researchers’ attention 

so far) or is currently colonizing new territory. A 

prerequisite for both assumptions is the presence of 

a specific vector for these phytomonads. Phytomonas 
spp. widely use coreid bugs as vectors (Dollet et al., 

1982; Jankevicius et al., 1989, 1993; Brasil et al., 

1990; Frolov et al., 2019), which means that these 

bugs are “comfortable hosts” for phytomonads. 

However, western conifer seed bug Leptoglossus 
occidentalis, whose diet is normally restricted to 

conifers, can hardly be a specific vector of P. serpens 

(Fent and Kment, 2011; Werner, 2011).

In the light of these considerations, we tend to 

regard the detection of P. serpens in L. occidentalis 

as a consequence of stochastic host-switching 

resulting from spontaneous disruption of the host 

diet. L. occidentalis bugs could become infected 

with P. serpens flagellates after feeding, e.g., on 

the faeces or the corpse of a specific vector. Both 

coprophagy and necrophagy are common in insects 

including phytophagous bugs, and thus may serve as 

a primary and a secondary mode of transmission of 

trypanosomatids between hosts (Frolov et al., 2021). 

It is also known that the gut stages of phytomonads, 

including P. serpens, which do not migrate to the 
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salivary glands of the host, get into the hindgut and 

are excreted with the faeces into the environment, 

where they can serve as a source of new infections 

(Jankevicius et al., 1989; Frolov et al., 2016).

Another pathway that might hypothetically 

lead to the emergence of the unusual host-parasite 

association described in this paper could be a for-ced 

or accidental change in the plant diet of L. occi-
dentalis, triggered by food shortage and/or new 

climatic conditions for this invasive bug. There is 

evidence that L. occidentalis may feed on ripening 

fruit of pistachio (Anacardiaceae), though in rare 

cases and under experimental conditions (Rice et al., 

1985; Uyemoto et al., 1986). Therefore, it cannot be 

ruled out that these bugs might occasionally feed on 

other nonconiferous plants, too. This scenario does 

not exclude the feeding of L. occidentalis on tomato 

fruits and could explain the fact that the bugs were 

infected with the flagellates P. serpens.

The question about the specific vector of P. ser-
pens on the European continent and, in particular, 

in the Crimean Peninsula is still open. In our opi-

nion, the most probable candidate for this role is 

another invasive hemipteran species Nezara viridula 

L. (Hemiptera, Pentatomidae), also known as “sou-

thern green stink bug” or “green vegetable bug”. 

N. viridula is thought to be native in the Ethiopian 

zoogeographical region, from where it has spread 

into Asia, Europe and the Americas (Musolin and

Saulich, 2012). In the Crimea, N. viridula is a harm-

ful pest of vegetable crops, including tomatoes 

(Stryukova and Stryukov, 2020). The early work of 

Gibbs (1957) and the reports that the bugs N. viridula 
could be infected by Brazilian isolates of P. serpens 
in their preliminary experiments (Jankevicius et al., 

1989) lend credibility to this hypothesis.
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