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Abstract
The genus Amara Bonelli, 1810 is a very speciose and taxonomically difficult genus of the Carabidae. The 
identification of many of the species is accomplished with considerable difficulty, in particular for females 
and immature stages. In this study the effectiveness of DNA barcoding, the most popular method for 
molecular species identification, was examined to discriminate various species of this genus from Central 
Europe. DNA barcodes from 690 individuals and 47 species were analysed, including sequences from 
previous studies and more than 350 newly generated DNA barcodes. Our analysis revealed unique BINs 
for 38 species (81%). Interspecific K2P distances below 2.2% were found for three species pairs and one 
species trio, including haplotype sharing between Amara alpina//Amara torrida and Amara communis/
Amara convexior/Amara makolskii. This study represents another step in generating an extensive reference 
library of DNA barcodes for carabids, highly valuable bioindicators for characterizing disturbances in 
various habitats.
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Introduction

With the rise of modern sequencing technologies in the early 1990s, DNA sequences 
have been increasingly used as supplementary markers for species description, identi-
fication, and classification (Raupach et al. 2016). In this context, DNA barcoding has 
become the most popular approach for the assignment of specimens throughout all life 
stages to described and clas sified species following the Linnean guidelines (Hebert et al. 
2003a, 2003b). In the case of animals, an app. 660 base pair (bp) fragment of the mito-
chondrial cytochrome c oxidase subunit I (COI) gene has been chosen as standardized 
barcode marker (Hebert et al. 2003a, 2003b). The concept of DNA barcoding is based 
on a simple assumption: every species will most likely have unique DNA barcodes with 
low intraspecific variation and interspecific variation that exceeds the variability within 
species, generating a so-called DNA barcoding gap that highly depends on the studied 
taxonomic groups (Hebert et al. 2003a, 2003b, Čandek and Kuntner 2015, Koroiva 
and Kvist 2017). In spite of the fact that various effects can limit the usefulness of 
DNA barcodes and mitochondrial DNA in general, e.g., the presence of pseudogenes or 
numts (e.g., Bensasson et al. 2001, Leite 2012, Jordal and Kambestad 2014, Haran et al. 
2015), heteroplasmy (e.g., Magnacca and Brown 2010, Robinson et al. 2015), effects of 
Wolbachia infections within terrestrial arthropods (e.g., Hurst and Jiggins 2005, Werren 
et al. 2008, Smith et al. 2012), or general critics on the concept (e.g., Will and Rubinoff 
2004, Collins and Cruickshank 2013), numerous studies have demonstrated that DNA 
barcoding yields excellent results across a broad range of various animal taxa (e.g., Costa 
et al. 2007, Aliabadian et al. 2013, Knebelsberger et al. 2014, Lobo et al. 2015, Raupach 
et al. 2015, Barco et al. 2016). Today, barcode data can be easily managed and analysed 
using the public Barcode of Life data base (BOLD; www.boldsystems.org; Ratnasing-
ham and Hebert 2007). This core data retrieval interface offers various analytical tools, 
including the Barcode Index Number (BIN) system (Ratnasingham and Hebert 2013).

In term of arthropods, most DNA barcoding studies focus on insects (Raupach 
and Radulovici 2015), e.g., the Ephemeroptera, Plecoptera and/or Trichoptera (Zhou 
et al. 2009, Zhou et al. 2011, Ruiter et al. 2013, Moriniére et al. 2017), Heteroptera 
(Jung et al. 2011, Park et al. 2011, Raupach et al. 2014), Hymenoptera (Smith and 
Fisher 2009, Smith et al. 2013, Schmidt et al. 2015), Lepidoptera (e.g., Hajibabaei et 
al. 2006, Hausmann et al. 2011, Hausmann et al. 2013, Kekkonen et al. 2015), and 
others (e.g., Glover et al. 2010, Morinière et al. 2014, Hawlitschek et al. 2017). In 
comparison to the high number of described species, however, the number of studies 
analysing the Coleoptera (e.g., Greenstone et al. 2011, Woodcock et al. 2013, Pentin-
saari et al. 2014, Hendrich et al. 2015, Oba et al. 2015, Rougerie et al. 2015, Han et 
al. 2016), and in particular the Carabidae or ground beetles (Greenstone et al. 2005, 
Raupach et al. 2010, 2011, 2016b), is still low.

Ground beetles represent highly valuable and frequently used bioindicators for the 
characterization of disturbances in various habitats such as forests, meadows, fens, or 
river banks (e.g., Lövei and Sunderland 1996, Rainio and Niemelä 2003, Koivula 2011, 
Kotze et al. 2011). Within the Carabidae, Amara Bonelli, 1810 is a large genus in the 

http://www.boldsystems.org
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tribe Zabrini Bonelli, 1810. Many species are Holarctic, but a few are Neotropical or 
occur in Eastern Asia. About 150 European species are known (Luff 2007), with 52 re-
corded for Germany (Trautner et al. 2014). Beetles of this genus are typically character-
ized by their rather oval and parallel-sided form, with females that are often somewhat 
duller than the males and may even differ in body shape (Luff 2007) (Fig. 1). While 
ground beetles are mostly carnivorous, numerous Amara species feed on plant seeds 
as both larvae and adults (e.g., Hůrka 1996, Jørgensen and Toft 1997, Holland 2002, 
Klimeš and Saska 2010), although some species consume seeds only as a supplement to 
their predominantly predatory diet (e.g., Goldschmid and Toft 1997, Holland 2002, 
Koprdova et al. 2008). They typically require dry habitats, uncultivated areas and open 
vegetation on light soils, such as sand, gravel, or chalk (e.g., Kromp 1989, Thomas et 
al. 2001). As a consequence of their more or less homogenous habitus and very subtle 
morphological differences between species (e.g., the shape of the pronotum or colora-
tion of antennomeres), Amara is known as the most challenging genus of ground beetles 
in terms of species identification in Central Europe. Nevertheless, Fritz Hieke (1930–
2015) devoted his scientific career to this genus and thoroughly cleared up the difficult 
taxonomic assessment of this genus at all levels (e.g., Hieke 1984, 1988, 2005). In this 
context he published a list of valid names and their synonyms, with over 560 specific 
and subspecific, and 47 subgeneric names (Hieke 1995, 2011).

Here we present the next step in building-up a comprehensive DNA barcode li-
brary of Central European species of ground beetles as part of the German Barcode 
of Life project (GBOL), focusing on the genus Amara. The analysed barcode library 
included 46 Amara species as well as one species of Zabrus Clairville, 1806 which 
represents the second genus of the tribe Zabrini known from Central Europe. Four 
species (Amara littorea Thomson, 1857, Amara makolskii Roubal, 1923, Amara sabu-
losa Audinet-Serville, 1821, and Amara spectabilis Schaum, 1858) were not covered 
by previous studies so far. (Raupach et al. 2010, Pentinsaari et al. 2014, Hendrich et 
al. 2015). In summary, 358 new barcodes were generated and a total number of 690 
DNA barcodes examined.

Material and methods

Sampling of specimens

All new studied beetles were collected between 1997 and 2017 using various sampling 
methods (e.g., hand collecting, pitfall traps). Beetles were stored in ethanol (96%) and 
determined by two of the authors (KH, MJR), K.-H. Kielhorn (Berlin, Germany) and 
F. Köhler (Bonn, Germany) using the keys in Hieke (2006) or Paill (2016). In total, 
358 new DNA barcodes of 37 species were generated. Furthermore, 332 DNA barcodes 
of three previous studies (Raupach et al. 2010: 17 specimens, 5 species; Pentinsaari et 
al. 2014: 113 specimens, 34 species; Hendrich et al. 2015: 202 specimens, 32 species) 
were included, generating a data set of 690 DNA barcodes from 47 species in total. Five 
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Figure 1. An image collection of some representative species of the analysed ground beetles. A Amara 
(Amara) similata (Gyllenhal, 1810) B Amara (Amarocelia) erratica (Duftschmid, 1812) C Amara (Bradytus) 
fulva (Müller, 1776) D Amara (Curtonotus) convexiuscula (Marsham, 1802) E Amara (Leirides) spectabilis 
Schaum, 1858 F Amara (Paracelia) quenseli (Schönherr, 1806) G Amara (Xenocelia) cursitans Zimmer-
mann, 1931 H Amara (Zezea) kulti Fassati, 1947, and I Zabrus tenebrioides Goeze, 1777. Scale bars 1 mm. 
All images were obtained from www.eurocarabidae.de.

http://www.eurocarabidae.de
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of the studied species are not known from Germany, including Amara alpina (Paykull, 
1790) (n = 3; collected in Finland, see Pentinsaari et al. 2014), Amara hyperborea De-
jean, 1831 (n = 1; collected in Finland, see Pentinsaari et al. 2014), Amara interstitialis 
Dejean, 1828 (n = 1; collected in Finland, see Pentinsaari et al. 2014), Amara spectabilis 
Schaum, 1858 (n = 3, collected in Austria), and Amara torrida Panzer, 1796 (n = 4; 
collected in Finland, see Pentinsaari et al. 2014). The number of specimens per species 
ranged from one (6 species) to a maximum of 55 for Amara aenea (De Geer, 1774). 
Most beetles were collected in Germany (n = 513, 74.4%), whereas various specimens 
from other countries were included for comparison: Finland (99, 14.4%), Austria (41, 
5.9%), Italy (12, 1.7%), Sweden (7, 1%), Estonia (4, 0.6%), France (4, 0.6%), Czech 
Republic (3, 0.4%), Denmark (3, 0.4%), Belgium (2, 0.3%), and Slovenia (2, 0.3%).

DNA barcode amplification, sequencing, and data depository

All laboratory operations were carried out, following standardized protocols for COI 
amplification and sequencing (Ivanova et al. 2006, deWaard et al. 2008), at the Ca-
nadian Center for DNA Barcoding (CCDB), University of Guelph, the molecular 
labs of the Zoologisches Forschungsmuseum Alexander Koenig in Bonn, the German 
Centre of Marine Biodiversity Research, Senckenberg am Meer, in Wilhelmshaven, or 
the working group Systematics and Evolutionary Biology at the Carl von Ossietzky 
University Oldenburg, all in Germany. Photos were taken from each studied beetle 
before molecular work was performed. One or two legs of one body side were removed 
for the subsequent DNA extraction which was performed using the QIAmp Tissue 
Kit (Qiagen GmbH, Hilden, Germany) or NucleoSpin Tissue Kit (Macherey-Nagel, 
Düren, Germany), following the extraction protocol.

Detailed information about primers used, PCR amplification and sequencing proto-
cols is given in a previous publication (see Raupach et al. 2016b). All purified PCR prod-
ucts were cycle-sequenced and sequenced in both directions at contract sequencing facili-
ties (Macrogen, Seoul, Korea, or GATC, Konstanz, Germany), using the same primers as 
used in PCR. Double stranded sequences were assembled and checked for mitochondrial 
pseudogenes (numts) analysing the presence of stop codons, frameshifts as well as double 
peaks in chromatograms with the Geneious version 7.0.4 program package (Biomatters, 
Auckland, New Zealand) (Kearse et al. 2012). For verification, BLAST searches (nBLAST, 
search set: others, program selection: megablast) were performed to confirm the identity 
of all new sequences as ground beetle sequences based on already published sequences 
(high identity values, very low E-values) (Zhang et al. 2000, Morgulis et al. 2008).

Comprehensive voucher information, taxonomic classifications, photos, DNA bar-
code sequences, primer pairs used and trace files (including their quality) are publicly 
accessible through the public data set “DS-BAAMA” (Dataset ID: dx.doi.org/10.5883/
DS-BAAMA) on the Barcode of Life Data Systems (BOLD; www.boldsystems.org) 
(Ratnasingham and Hebert 2007). Finally, all new barcode data were deposited in 
GenBank (accession numbers: MH300683–MH300903).

http://www.boldsystems.org
http://www.ncbi.nlm.nih.gov/nuccore/MH300683
http://www.ncbi.nlm.nih.gov/nuccore/MH300903
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DNA barcode analysis

The analysis tools of the BOLD workbench were employed to calculate the nucleo-
tide composition of the sequences and distributions of Kimura-2-parameter distances 
(K2P; Kimura 1980) within and between species (align sequences: BOLD aligner; am-
biguous base/gap handling: pairwise deletion). All barcode sequences became subject 
of the Barcode Index Number (BIN) system implemented in BOLD which clusters 
DNA barcodes in order to produce operational taxonomic units that closely corre-
spond to species (Ratnasingham and Hebert 2013). A threshold of 2.2% was applied 
for a rough differentiation between intraspecific and interspecific distances based on 
Ratnasingham and Hebert (2013). It should be noted that the BIN assignments on 
BOLD are constantly updated as new sequences are added. Therefore, individual BINs 
can be split or merged in light of new data (Ratnasingham and Hebert 2013).

Furthermore, all sequences were aligned using MUSCLE (Edgar 2004) and ana-
lysed using a neighbour-joining cluster analysis (NJ; Saitou and Nei 1987) based on 
K2P distances with MEGA7.0.21 (Kumar et al. 2016). Non-parametric bootstrap sup-
port values were obtained by resampling and analying 1,000 replicates (Felsenstein 
1985). It should be explicitly noted that this analysis is not intended to be phyloge-
netic. Instead of this, the shown topology represents a graphical visualization of DNA 
barcode divergences and putative species cluster. Finally, statistical maximum parsi-
mony networks were constructed for species pairs with interspecific distances <2.2% 
with TCS 1.21 based on default settings (Clement et al. 2000) as part of the software 
package of PopART v.1.7 (Leigh and Bryant 2015). Such networks allow the identi-
fication of haplotype sharing between species as a consequence of recent speciation or 
on-going hybridization processes (e.g., Raupach et al. 2010).

Results

In total, 690 DNA barcode sequences of 47 carabid beetle species were examined. 
A full list of the species is presented in the supporting information (Suppl. mate-
rial 1). In total, 46 species of the genus Amara were studied, with 41 (79%) of the 
52 species documented for Germany. Five analysed species, Amara alpina (Paykull, 
1790) (n = 3), Amara hyperborea Dejean, 1831 (n = 1), Amara interstitialis Dejean, 
1828 (n = 1), Amara spectabilis Schaum, 1858 (n = 3), and Amara torrida Panzer, 
1796 (n = 4), are not known from Germany. All these specimens were collected 
from other countries (see above). Fragment lengths ranged from 307 bp (n =14) to a 
full length of 657 bp. Base frequencies analysis revealed low GC-contents (average: 
32%) for the barcode fragment, as it is known from insects and other arthropods. 
The individual mean nucleotide contents were A = 0.29, C = 0.15, G = 0.17, and T 
= 0.39. Intraspecific K2P distances ranged from zero to 2.18% (Amara bifrons (Gyl-
lenhal, 1810)). Interspecific K2P distances had values between zero and a maximum 
of 10.06%.
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The BIN analyses were performed on January 11th 2018. Unique BINs were re-
vealed for 38 species (81%). Three species pairs shared a BIN: Amara alpina Paykull, 
1790 and Amara torrida (Panzer, 1796) were both included in ACF5385, Amara famil-
iaris (Duftschmid, 1812) and Amara lucida (Duftschmid, 1812) in AAC4901, and Am-
ara ovata (Fabricius, 1792) and Amara similata (Gyllenhal, 1820) in AAJ5377. Further-
more, one BIN (ACF1000) contained three species: Amara communis (Panzer, 1797), 
Amara convexior Stephens, 1828, and Amara makolskii Roubal, 1923 (the so-called Am-
ara communis complex). Interspecific distances of zero were found for Amara alpina and 
Amara torrida as well as for Amara communis, Amara convexior and Amara makolskii.

The NJ analyses based on K2P distances revealed non-overlapping clusters with 
bootstrap support values >90% for 33 species (70% of all studied species) with more 
than one studied specimen (Fig. 2). A comprehensive topology is presented in the sup-
porting information (Suppl. material 2).

Our statistical maximum parsimony analysis revealed closely related haplotypes 
for Amara ovata (Fabricus, 1792) and Amara similata (Gyllenhal, 1810) (Fig. 3a). The 
dominant haplotypes of both species (Amara ovata: h1, Amara similata: h2) were sepa-
rated by six mutational steps. An even lower number of mutational steps were found 
between Amara familiaris (Duftschmid, 1812) and Amara lucida (Duftschmid, 1812) 
(Fig. 3b): the only examined specimen of Amara lucida (h5) was separated from the 
dominant haplotype of Amara familiaris (h1) by two mutational steps. Furthermore, 
multiple haplotypes shared by more than one species were found in the Amara com-
munis complex (n = 49; Fig. 4) and for Amara alpina (n = 3) with Amara torrida (n = 4) 
(Fig. 5). For the Amara communis complex, eight different haplotypes with two domi-
nant ones (h1, h2) were identified. Whereas haplotype h1 was shared by 18 specimens 
with all three species (Amara communis: n = 6, Amara convexior: n = 2, Amara ma-
kolskii: n = 10), haplotype h2 was found exclusively in specimens of Amara convexior 
(n = 17). Haplotype h3, located between h1 and h2 in the network, was shared by 
specimens of Amara communis (n = 8) and Amara convexior (n = 1). In addition, five 
haplotypes represented by one specimen only (singletons) were located at the periphery 
of the network (Amara communis: h4, h5, Amara convexior: h8, Amara makolskii: h6, 
h7). In the case of Amara alpina and Amara torrida, the statistical maximum parsimony 
analysis revealed four haplotypes, with one haplotype (h2) shared by specimens of both 
species (Amara alpina: 2 specimens, Amara torrida: 1 specimen). This haplotype was 
separated by four additional steps from haplotype h1 that was restricted to specimens 
of Amara torrida. Furthermore, two singletons (h3: two additional mutational steps; 
h4: one additional mutational step) were connected with haplotype h1, generating a 
compact network that contained only a few mutational steps.

Discussion

Within the past few years, DNA-based approaches have become more and more popu-
lar for the assessment of biodiversity and identification of specimens, in particular where 
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Figure 2. Neighbour-joining topology of the analysed ground beetle species based on Kimura 2-parameter 
distances. Triangles show the relative number of individual’s sampled (height) and sequence divergence 
(width). Red triangles indicate species pairs with interspecific distances <2.2%. Numbers next to nodes 
represent non-parametric bootstrap values >90% (1,000 replicates). Asterisks indicate species not recorded 
in Germany. All images were obtained from www.eurocarabidae.de.

http://www.eurocarabidae.de


A DNA barcode library for ground beetles of Germany: the genus Amara Bonelli... 9

Figure 2. Continue.
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Figure 3. Maximum statistical parsimony networks of two species pairs: A Amara ovata (Fabricius, 
1792) and Amara similata (Gyllenhal, 1810), and B Amara familiaris (Duftschmid, 1812) and Amara 
lucida (Duftschmid, 1812). Used parameters included default settings for connection steps whereas gaps 
were treated as fifth state. Each line represents a single mutational change whereas small black lines indi-
cate missing haplotypes. The numbers of analysed specimens (n) are listed, the diameter of the circles is 
proportional to the number of haplotypes sampled (see given open half circles with numbers). Scale bars 
1 mm. Beetle images were obtained from www.eurocarabidae.de.

http://www.eurocarabidae.de


A DNA barcode library for ground beetles of Germany: the genus Amara Bonelli... 11

Figure 4. Maximum statistical parsimony network of the Amara communis complex. Used parameters 
included default settings for connection steps whereas gaps were treated as fifth state. Each line repre-
sents a single mutational change whereas small black lines indicate missing haplotypes. The numbers of 
analysed specimens (n) are listed, the diameter of the circles is proportional to the number of haplotypes 
sampled (see given open half circles with numbers). Scale bars 1 mm. Beetle images were obtained from 
www.eurocarabidae.de.

the traditional morphology-based identification has proved problematic (Taberlet et al. 
2012). As a consequence of this development and the rise of new concepts (Hebert et 
al. 2003a, 2003b), the analysis of single specimens, bulk samples (metabarcoding) or 
environmental DNA (eDNA) will be performed routinely as part of modern species 
diversity assessment studies in the near future (e.g., Scheffers et al. 2012, Cristescu 
2014, Kress et al. 2015). However, such studies highly rely on comprehensive on-line 
sequence libraries that act as references (e.g., Brandon-Mong et al. 2015, Creer et al. 
2016, Staats et al. 2016). Therefore, our DNA barcode library represents an important 

http://www.eurocarabidae.de
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step for the molecular characterization of ground beetles in Central Europe and adja-
cent regions. The current results demonstrate that DNA barcodes distinguish Central 
European species of the taxonomically challenging genus Amara remarkably well. Our 

Figure 5. Maximum statistical parsimony network of Amara alpina (Paykull, 1790) and Amara torrida 
Panzer, 1796. Used parameters included default settings for connection steps whereas gaps were treated 
as fifth state. Each line represents a single mutational change whereas small black lines indicate missing 
haplotypes. The numbers of analysed specimens (n) are listed, the diameter of the circles is proportional 
to the number of haplotypes sampled (see given open half circles with numbers). Scale bars 1 mm. Beetle 
images were obtained from www.eurocarabidae.de.

http://www.eurocarabidae.de
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analysis revealed unique BINs for 38 (81%) of the 47 analysed species. The results co-
incide with high rates of successful species identification of previous barcoding studies 
on ground beetles (Raupach et al. 2010, 2011, Pentinsaari et al. 2014, Hendrich et 
al. 2015, Raupach et al. 2016b). In contrast to other carabid genera, e.g., Bembidion 
Latreille, 1802 (Raupach et al. 2016b) or Calathus Bonelli, 1810 (Hendrich et al. 
2015), no evidence was found for high intraspecific distances (above 2.2%) within the 
analysed Amara species. In contrast to this, low intraspecific distances (below 2.2%) 
and shared haplotypes for various species pairs were revealed. Such low distances are 
typically indicative of a recent ancestry and/or ongoing gene flow for various species 
pairs (e.g., Tautz et al. 2003, Frezal and Leblois 2008, Raupach et al. 2010). We will 
discuss these cases in more detail.

I. Amara ovata (Fabricius, 1792) and Amara similata (Gyllenhal, 1810)

Both species are abundant and widespread members of the subgenus Amara, with 
a trans-Palearctic distribution from Europe to Eastern Siberia (e.g., Lindroth 1986, 
Hůrka 1996, Hieke 2006). Using morphological traits, both species are best separated 
on the shape of the pronotum (Hieke 1975, Lindroth 1986, Hieke 2006). Neverthe-
less, a close relationship of both species has been already suggested in the past (e.g., 
Lindroth 1986, Luff 2007). Our analysis clearly supports this view. In spite of the 
fact that both species have the same BIN, they form distinct clusters separated by six 
mutational steps (Fig. 3A). Consequently, all examined specimens can be assigned to 
both species without doubt. However, it should be noted that the amount of intraspe-
cific variation of DNA barcode sequences (and mitochondrial DNA in general) can 
correlate with the geographical scale of sampling (e.g., Wiemers and Fiedler 2007, 
Bergsten et al. 2012 but see Huemer et al. 2014). For this study, all studied specimens 
were sampled in Europe (Amara ovata: 1 specimen from Belgium, 1 from Italy, 6 from 
Finland, 30 from Germany; Amara similata: 3 specimens from Finland, 27 from Ger-
many). Only the analysis of additional beetles from other regions, e.g., Central and 
Eastern Asia, will show if both species can be identified across their complete distribu-
tion ranges without doubt.

II. Amara familiaris (Duftschmid, 1812) and Amara lucida (Duftschmid, 1812)

Similar to the previous species, Amara familiaris and Amara lucida are widespread spe-
cies of the subgenus Amara with a Palearctic (Amara familiaris) or West Palearctic (Am-
ara lucida) distribution (Hůrka 1996, Hieke 2006). From a morphological perspective, 
both species are very similar, being black with a greenish or brassy metallic reflection 
(e.g., Luff 2007). However, specimens of Amara lucida are somewhat smaller and a 
little narrower than beetles of Amara familiaris, but the only useful morphological 
traits for species identification are differences within the front angles of the pronotum 
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(e.g., Lindroth 1986, Hůrka 1996, Hieke 2006). Not surprisingly, the given DNA bar-
code data confirm the supposed closed relationship (Fig. 3B), but unfortunately only 
one specimen of Amara lucida has been examined so far. More beetles of this species 
should be studied in detail in the near future in order to validate if two distinct clusters 
exist or haplotype sharing occurs.

III. The Amara communis complex

Within the genus Amara, the Amara communis complex represents one of the most 
challenging and controversial group of species in Europe. The complex consists of 
four very similar and closely related species of the subgenus Amara: Amara communis 
(Panzer, 1797), Amara convexior Stephens, 1828, Amara makolskii Roubal, 1923, and 
Amara pulpani Kult, 1949. All species are characterized by the combination of vari-
ous morphological traits including the presence of a scutellar stria, deepened and api-
cally widened elytral striae, and the coloration of antennomere 2 and 3 (Hůrka 1996, 
Hůrka and Rúžičkova 1999, Paill 2016). The specific status of Amara communis and 
Amara convexior has been acknowledged for a long time (e.g., Hieke 2006). Both are, 
similar to other species of this genus, widespread and abundant species with a Palearc-
tic (Amara communis) or West Palearctic (Amara lucida) distribution (Hůrka 1996, 
Hieke 2006). In contrast to this, Amara makolsii und Amara pulpani were considered 
as synonyms of Amara communis (e.g., Lindroth 1986, Hieke 2006, but see Gersdorf 
and Kuntze 1957, Burakowski 1967). Nevertheless, both species were accepted as valid 
species some years ago (Hůrka 1996, Löbl and Smetana 2017), but their distribution is 
still insufficiently documented (e.g., Hůrka 1996, Paill 2003, Schmidt 2004, Schäfer 
2005, Gebert 2009, Müller-Kroehling 2013, Trautner et al. 2014). Not surprisingly, 
the DNA barcode data revealed multiple haplotype sharing between all three studied 
species, preventing correct species identification (Fig. 4). Unfortunately, DNA bar-
codes of Amara pulpani are currently missing and have to be generated in the future. 
Nevertheless, we strongly recommend a comprehensive analysis of fast evolving nu-
clear markers, e.g., micro satellites or SNPs, from specimens of all four species from 
different localities in order to evaluate if already distinct species exist or hybridization 
events still take place.

IV. Amara alpina Paykull, 1790 and Amara torrida (Panzer, 1796)

All data of both species were part of a previous study (Pentinsaari et al. 2014), but 
not discussed in detail. The two species are part of the subgenus Curtonotus, show a 
widespread circumpolar distribution, and are suggested as closely related (Lindroth 
1986). In general, specimens of Amara alpina can be separated from Amara torrida by 
the color of the appendages and the pronotal form (Lindroth 1986). Similar to the 
Amara communis complex (see above), haplotype sharing prevents a valid discrimina-
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tion of both species by the means of DNA barcoding (Fig. 5). Again, more specimens 
and other, especially nuclear markers, have to be studied to analyse if Amara alpina and 
Amara torrida still hybridize or distinct species exist.

Conclusions

Used alone or in combination with DNA metabarcoding on environmental samples 
(Taberlet et al. 2012), DNA barcoding is becoming a standard for basic and applied 
research in ecology, evolution and conservation across taxa, communities and ecosys-
tems (Zinger and Philippe 2016). In this context, our study clearly encourages the use 
of DNA barcodes for the identification of ground beetles species of the taxonomically 
difficult genus Amara. However, DNA barcodes of additional eleven Amara species 
documented for Germany are currently missing. The analysis of these missing species 
may include other, so far undetected problematic cases. For example, Amara chaudoiri 
Schaum, 1858 and Amara concinna Zimmermann, 1832 are morphologically very 
similar species. Nevertheless, our data set and results represent another important step 
in building-up a comprehensive barcode library for the Carabidae in Germany and 
Central Europe which can be used in modern molecular biodiversity assessment stud-
ies. Despite the fact that DNA barcoding failed to deliver a valid species identification 
for some species in this study, it narrows the options to a pair (or in one case trio) of 
closely related species. Especially for the almost impossible identification of immature 
stages and/or females within various species of Amara, this is a very encouraging result.
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Supplementary material 1

Barcode analysis using the BOLD workbench
Authors: Michael J. Raupach, Karsten Hannig, Jérôme Morinière, Lars Hendrich
Data type: Data table.
Explanation note: Molecular distances based on the Kimura 2-parameter model of the 

analysed specimens of the studied species of the genera Amara and Zabrus. Diver-
gence values were calculated for all studied sequences, using the Nearest Neighbour 
Summary implemented in the Barcode Gap Analysis tool provided by the Barcode 
of Life Data System (BOLD). Align sequencing option: BOLD aligner (amino acid 
based HMM), ambiguous base/gap handling: pairwise deletion. ISD = intraspecific 
distance. BINs are based on the barcode analysis from 15-01-2018. Asterisks indi-
cate species not recorded from Germany. Species pairs with interspecific distances 
<2.2% are marked in bold.

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.@@.24169.suppl1

Supplementary material 2

Neighbour-joining topology
Authors: Michael J. Raupach, Karsten Hannig, Jérôme Morinière, Lars Hendrich
Data type: Neighbour-joining topology.
Explanation note: Neighbour-joining phylogram of all analysed ground beetle speci-

men based on Kimura 2-parameter distances. Individuals are classified using ID 
numbers from BOLD and species name. Numbers next to nodes represent non-
parametric bootstrap values (1,000 replicates, in %).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.@@.24169.suppl2
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