Russian Entomological Journal

Русский Энтомологический Журнал

Vol. 2. No. 5-6. Том 2. Вытн. 5-6.

December 1993 Декабрь 1993

(c) *Russian Entomological Journalo составлекие, редактирование complling, ediling

© K.I. Muxaüsos (K.C. Mikhaltoo)
макет обложгки
cover design

Ha mumyse:

Clytus wesparum stepanavi Danllevsky et Miroshnikov. Puc. M.П. Ilesчenko. Иง: М.ЛДакивеоскиа. А.И.Мирошмикоя. Жуки-дровосеки Каекаяа.
Краснодар, 1985, с.27s.

Издатели: М.А. Кирюшкии, К.г. Михайлов.
Publishers; M.A. Kiryushkin, K.G. Mikhailov.
Homep верстал A.E. Hиколaes.
Layout by D.E, Nikolaev.
Отдел пддпнски: К.Г. Мнхайлов, Distribution manager: K.G. Mikhallov
phone (7-095) 203-67-31.
FAX: (7-095) 292-6511 BOX: 194-74 SPIDERS
E-mall (Internet): KMK@GPNTB.MSK.SU
Address for correspondence (nol for payment!):
Dr. K.Mikhailov, Zoological Museum of the Moscow State University, Herzen Str., 6, K-9 Moscaw 103009 Russia.

Bank account: \# 001177087
Bank "INKOMBANK", Sushchevskiy Office
Bank address (for payment): Nametkina Str. 14/1, Moscow 117420 RUSSIA

Prinied in January 1994.
Otienstaino i sacsape 199 .

A new beetle fanily, Declinindae fam.n., from the Ruscian Far East and its taxonomic relationships (Coleoptera Polyphaga)

Нодое семейство жесткокрмиых Declinïdze fam.п. с Аельнего Bостока России и ето тахсономические салзи (Coleoptera Polyphaga)

N.B. Nilitsky*, J.F. Lawrence**, A.G. Kirejithul***, W.G. Gratshev****
Н.Б. Ниситсвий*, Ахк.Ф. Аоуренс"*, А.І. Кирейчук***, В.Г. Трачев****

${ }^{*}$ Zoological Museum, Moscaw Suate Universty, Hersen Slreet 6, Memcon K-9. 103009 Russle.

- Diviston of Einlomplogy CSt.RO., G.PO; 1700 Canberra, A.C.T. 2601 Aupiralle.
"- Zoologlcal Instute, Russian Aitedemy of Sclencer. Univarsicelskaya nat. I, Sc.-Peterithrigy 199034 Runsla.

KEY WORDS: Decllnia relicta gen. et sp.n., Declinnidar fam.n., taxonomic reiationships, Russian Far East.

КЛЮОЧЕВЫЕ CЛOBA: Declinia relicta gen. et sp,n., Declinidae fam.n., таксокомические связи, Дальннй Восток России.

ABSTRACT: Based on the $\%$ only, the beetle Declinia rellicta gen, et sp. n. is described from the Far Eass of Russia, displaying a unique combimation ol characters warranting a new amily, Decliniidae fam,n. This new family seems to be either a member of the Byrrhoidea s.l. or a representative of the superiamily Eucinetoidea, or an independent intermediate lineage near the common stem of these three groups.

PEЗЮМЕ: По однии Аншы Eостожа России описывается жук Declinia relicta gen, et sp.л.. уннкальная комбннация прнзнакое. которого позвакяет выделить его в новое сешейство Declinidaе łam.n. Эта вовое семейство, кажется, либо член Bytrhoidea 5.l., либо представитель надсемейства Eucinetoidea, либо особая промежуточная эволюццнонная ветав, стояиая у основання обиего ствола этих трех групп.

1. Introduction.

Discovery, not creation due to taxonomic manipalations, of a new lamily can be termed as quite an event in modern entomology, let alone coleopterology. Moreover, when such a discovery refers to the Palearctic launs, this is certainly extraordinary, Everyyear, hundreds of new beetle species and a iew
dozen new gentera are described, this surely reflecting the fact that insect alpha-taxonomy is still in demand. This is quite natural, for the Insecta represents to most speciose class among all living creatures, with the estimated diversity possibly amounting to over a million recent species.

The Coleoptera is the most diverse Insect order belleved to encompass over 350,000 described species scattered among 156 families [Lowrence, 1991]. One of the largest family groups currently comprising 32 beetle families is known as the Elateriformia, with its outgroup represented by the Eucinetoidea (further 3 families). Recently this complex, especially Elaterilormia, received special attention due to the discovery, nof erection, of Rhinorhipidae, a new family from Australia [Lawrence, 1988]. Incidentally, we focus now on the same complex in connection with the discovery of another new family, this time deriving from the For East of Russia.

The paper is devoted to the description of a new beetle species, genus, and family from the Russian Far East, Based solely on the female sex available to the suthors, the status of this new family, Declinitidae fam.n., is extensively discussed in relation to other constituents of the series Elateriformia and Eucinetoidea.

2. Description of new taxa.

Declinta gen.n.

Type-species: Declinia relicta sp.n.
Body rather broad (Fig. 1), somewhat sonvex dorsally. Head hypognathous, but part of frons and vertex rather strongly protrudiug anteriorly (Fig. 2). Eyez well-developed, more or less rounded, strghtly convex, rether finely faceted, very broadly separated, lacking Interfacetal setae; with nelther epicranial suture not endocarina; frontoclypeal suture usually distinct, impressed. Tempora short but distinct, transverse ridge behind tempora present but incomplete. Mandibles rather short, unidentate at apex (Flg 3). Mola rather poorly.developed. Galea and lacinia rather well-developed, latter considerably namower than former, both ending about sume level, with the external tobe being allghtly longer than internal one (Fig. 4). Segment 4 of maxillary palp more or less cylindrical or oblong. oval, apicaily subtruncate, Mentum very welldeveloped, sclerotized, tounded anteriorly, covering mouthparts from below (Figs 5-6). Labial lobules short and broad, Last segment of labial palp considerably brosder than preceding one, laterally only 3lightly rounded, apically either very gently rounded, almost squarely truncate (Fig. 6). Corpotentorlum present, Leminotentoria absent, possibly weakly developed at best.

Antennae (Fig, 7) litting into very deep, long and rather narrow antennal grooyes reaching to resr part of head and delimited externally by internal ocular margin, Antennomeres 6-11 distinctly broadened, joints 6 -10 rather serratate, being broadened considerably asymmetrically. Antennomeres $1-2$ rather broad; joints 3.5 narrow, filiform, joint 3 being rather strongly elongated.

Pronotum very strongly transverse, considerably broader than head and somewhat more narrow than elytral humeri. Lateral margins of pronotum somewhat explanate and flattened, not fully even, usually more or less visibly margined. Base of pronotum at least medially margined, shallowly bisinuate, Fore margin of pronotum more or less straight or slightly rounded.

Scutellum rather large, more or less roundlytriangular (Fig. 1). Elytra more or less confusedly punctured, with traces of several longitudinal striae rather displayed as caudally shortened hachures, without ventral interlocking tongue in front ol apex. Elytral apices somiewhat pointed. Elytral epipleura well-developed, at level of visibile sternite I gradually tapering, but at level of sternites 4 and 5
distinclly broadened (Fig. 12), this feature belng uncharacteristic at least of the bulk of beetle groups we know. Bases of epipleura with well-developed impressons for feriora to it into.

Prosternum short, in front of procoxae considerably shorter than their longitudinal diameter (Fig. 8). Propleuron very well-developed and externai, with a short pleural Ilange extending anteriorly and lying in between noturn and sternum at anterior edge ol prothorax. Prosternal process broad, not less than 0.4 times as broad as transverse diameter of coxa, posteriorly fltting into a well-developed, transverse cavity on mesothorax. Procoxal eavities open posteriorly (Fig. 8), Promesothoracic interlocking device barely developed. Mesosternal process separating mesocoxae wide, not tess than 0.5 times as broad as transverse dlameter of coxs, completely divided by a longitudinal suture. Trochantin of mesocoxae well-developed. Mesepimera reaching mesocoxae. Metesternum well-developed, a little longer than visible abdominal sternites $1-2$, with a well-developed median (longitudinal) suture, Trans: verse metasternal suture more or less visible. Metepisterna broad, In anterior part impressed and more or less parallel-sided, not more than 2.7 times as long as broad, partly closing mesocoxal cavities laterally. Metacosae divided by a narrow process of visible abdominal sternite 1 . Metacoxal plates rather broad, rather abruptly tapering at mesal third and more or less parallel-sided for lateral two-thirds (Fig. 8). Legs rather short, with large trochanters; femora elther subequal in length to tibiae or a bt longer, attached more or less obliquely to trochanters, those of fare and middle legs considerably angularly broadened toward middle, considerably thicker than straight tibiae, the latter fitting into grooves on internal lemoral margin. Tiblae with two short, weakly developed spurs. Tarsi 5 -segmented, don't fitting into tibiae short, ca. 0.3 times as long as tiblae, segments $1-4$ considerably broadened, with a more or less well-developed felty pad, without membranous lobes; segment 4 more or less distinctly bilobed; last segment somewhat shorter than preceding segments combined; claws simple. Wings with a more or less well-developed, short, pigmented, subtriangular radial cell not very distinctly closed in its promixal part (Fig. 9). Wedge cell absent. Anal lobe well-developed. Wing lalding of dascilloid type. Metendosternite with a well-developed stem, a pair of somewhat eurved, long, lateral processes and a pair of ventrolateral protesses (Fig. 11). Abdominal ventrite 1 short, ventrites 23 somewhat longer, 1-3 connate, fixed immoyably, 4 5 movable, Spiracle on segment 8 reduced.

Ovipositor short and broad, moderately sclero(ized, Coxites divided into 2 subegual lobes, the basat one moderately broad, aplesl one much narrower and palpiform, with styius represented by group of lateral setae at apical third; valvifers subequal in length to coxites. Bursa well anterlor to common oviduct, with a sclerotized plate and with simple accessory gland attached at its base, Colleterial glands absent.

Declinia reticta sp.n.

Figs 1.13.
Holotype: O, Russian Far East, Maritime Prov., Ussuriysk Distr. Kamenushka, 27.V. 1990 teg. N. Nikitsky. - Paratypes: $\%$, same locality, 20.V.1990; f, same locallty, 11.VL,1984; i, same locality, 6.VI.1984; ;, same locality, 18.VI.1984; 9. same locality, 23.V1,1984; $\%$, Shkotovo Distr., Ussuriysky Reserve, "Peyshula", 6.VII,1982, all leg. N. Nikitsky; \%, Khasan Distr., "Kedrovaya Pad" Reserve, I0-15.VI.1987, leg. D. Fedorenko; i, Khabarovsk Prov., upper reaches of Amrun. Suluk \& Kuyuk rivers, 1,VII.1976, leg. Kabakov; of. Ussurl Area, leg. Emelyanov; 早, Magadan Area, floodplain of Arman River, 3,V1I. 1965 , leg. Li Ivllev,

Holotype and most of paratypes are housed in the Zoological Museum of the Moscow State University, two paratypes are kept in the Australlan National Insect Collection, three last-mentioned paratypes are in the collection of the Zoological Institute of the Russian Academy of Sciences, St.Petersburg.

Description: Body rather broad, more or less elongate and convex (Fig. 1). Suriace shining, dorsally clothed with very shorl, adpressed pubescence. Which is more sparse on elytra than on pronotum. Rear margin of head as well as both pronotumind elytra black to brown; irontal part of head, mouthparts, antennae, legs and usually part of abdomen red-brown to red-yetlow; elytral epipleura, lower parts of prothorex as well as part of metathorax, metepisterna and often mesepimera somewhat paler than main dorsal background.

Head (including eyes) 0.5-0.6 times as long as broad. Interocular isthmus about twice ss great as transverse ocular diameter. Cephalic punctuation generally rather flae, in medial part more sparse, with distance between punctures being subequal to diameter of a puncture, laterally more dense. Antennal Insertions exposed, located on sides of head near front of eye.. Tempora $0.2-0.25$ times as long as longitudinal ocular diameter. Manditles about as long and broad (Fig, 3). Last segment of
mexiltary palps distinctly elongate, Jonger than preceding three segments combined (Fig. 4). Last segument of labial palps considerably broader than precedlag segments, in shape resembling lost seg. ment of maxillary palps.

Mentum ca, 1.7-1.9 times as broad as long (Fig. 5). Antennae (Fig. 7) barely surpaseing base of elytra; antennomere 1 rather broad, more or less roundly-triangular, I.I-t 2 times as long as broad; antennomere 2 subtriangular, ca. 0.75 times as long is antennomere 1 and about as long and broad; antennomere 3 strongly elongate, $2.1-2.3$ times as long as broad, considerably longer and about half as broad as antennomere 2 ; antennomere $4 \mathrm{ca} .0 .8-0.9$ times as long as antennomere 3, about twice as long as broad; antennomere 5 similarly nerrow, longitudinal, only a Iittle shorter than antennomere 4; antenhomere 6 enlarged triangularly, subequal in length to antennomere 5, but 1.8-1.9 times broader, about long and broad; antennomere 7 considerably broader than 6 , but subequal In length, 1.3-1.5 times as broad as long; antennomeres $8-10$ similarly long and broad, subequal in length to antennomere 6, each 1.5-1.8 times as broad as long; anterinomere II oval, 1.7-1.9 times as long as 10th, 1.15-1.3 times as long as broad.

Pronotum convex, strongly transverse, 2,2-2.3 times as broad as long, $1.4-1.6$ times broader than head with eyes (Fig. 1), broadest near hase, distinctly and roundly narrowing anteriorly, with distance between fore comers being ca. 0.8 times as long as that between rear comers. Latter obtusedly rounded, but better expressed than completely rounded fore comers. Rear edge of pronotum margined only medially, whereas fore margin margined only laterally. Pronotal punctuation aboul same size as on head, punctures not large, anteriorily near middle of disk often more sparse than posterioily where distance between punctures usually a litle greater than, more seldomiless than or subequal to, their diameter. Larger punctures on pronotumi are interspersed by extrencly small, sparse punctures. Base of pronotum very shallowly bisinuate, without wellexpressed basal impressions.

Scutellum very weakly transverse, rather denseIy and more finely punctured than both pronotum and, especially, elytra. Elytral punctuation more or less irregular, rather rough, considerably coarser than on pronotum, distance between punctures varying considerably from specimen to specimen. being sometimes a little greater, sometimes considerably less thian diameter of a puncture. Elytra more or less convex, at humeri angularly roundea, 1.8-2.0 times as long as hroad, 1.1-1.17 times broader than

Figa. I-15. Deciinia relleta genn., sp.h., 9 paraiype: 1-habitus (dorsal), 2-head (tateral), a-mandible, 4-maxilla; 5-6-bablum (ventral \& dorsol. respi), 7 - anterna, 8 - thorax (venirat, with the prothorax slighly drawn away from themesothorax), 9 - wing, 10 - middle leg, 11 - metendostemite, 12 -abdomen and elyiral epipleura (sketeh), 13 - abdomen (ventrit).
base of pronotum, first somewhat broadening caudad, but apically attenuating and more or less pointed at tip. Traces of several striae on each elytron, very poor, not as any regular row of punctures, translucent traces of sows of punctures visible.

Piosternum in front ot procoxae ca, 0,4 times as long as longitudinal diameter of coxs, latter cs, 2.22.4 times as brand as long and 2.2 -2.4 times as broad as prosternal process (Fig. 8); latter broad, only about twiee as long as distance between cokae, margined on sides and at thp, strongly elongate, considerably surpussing rear margin of prothorax and fitting inta a deep, transverse cavity on mesothorax, the cavily being 1.7-2.0 times as broad as long. Mesosternum in front of tresocoxze ca. 0.3 0.33 times as long as longitudinal dlameter of coxa. Mesosternal process between mesocoxae divided by a longitudinal suture, ca, hall as wide as transverse diameter of Icoxa, reaching posterior 3rd or 4th of coxa. Posteriormost parts of mesocoxae divided by a broad, undivided metasternal process. Metasternum well-developed, in length subequal to or a bit longer than abdominal ventrites $1-2$ combined, Mesal part of metasternum glabrous, shining, rather delicately and moderately densely punctured; sides of metathorax and metepisterna more or less dull, with a rough. transversely rugose sculpture. wrinkles thereby being more or less strangly shining. Metepisterna 2.6-2.7 times as long as broad,

Pro- and mesolemora triangularly broadened toward midength, metafemora more or less simple (Fig. 10). Tibial spurs very short and poorlydeveloped, usually taking up not more than $1 / 2$ length of tarsomere 1. Tarsi short, ca. a third as long as libiae. Tarsomeres $1-3$ more or less slightly hul visibly broadened, tarsomere 4 enlarged more strongly than 3 rd, tarsomere I either subequal in width and tength or very feebly longitudinal, slightly longer than 2 nd and distinetly narrower than at least tarsomeres 3 and 4, both latter distinctly broadenied and lobate, usually more or less barely differing in slze from one another and from tarsomere $I_{\text {: }}$. tarsomere 5 deeply litting dorsally into a depression on 4th, only slightly shorter than preceding farsomeres combined. Visible abdominal sternite 1 ca. 0.4 fimes as long as 2 nd , latter beling subequal to or a Ifttle shorter than 3rd; sternite 4 ca. 0.75 times as long as 2nd, sternite 5 ca .1 .5 times as long as 4 th (Fig. 13). Abdominal ventrites I-3 medially more or less shining, on sides more dull, distinctly shagreened; both ventrites 4 and, especially, 5 more or less dull; all abdominal ventrites rather finely and not very densely punctured. Underside clothed with short and rather sparse pubescence, somewhat more dense on abdomen than on thorax.
3. Decliniidae, fam.n, and its taxonomic relationships.

A new lamily, Declinitdat fam.n., is based upon the monotypic Deillinia gen.n. from the Far East of Russia. The new genus exhibits a unique combination of characters warranting its recognition as a new family. More precisely, in the system proposed by Lawrence [1985], the lamily, Decliniidae fam.n. setms to occupy \neq position intermediate between the superiamily fucinetoides (with the lamilfes Clambidae, Eucinetidae, Scirtidae) and the series Elateriformia containing Dascilloidea (Dascillidse, Rhipiceridae). Byrthoidea (Buprestidae, Byrrhidae, Dryopidae, Lutroehidae, Elmidae, Heteroceridae, Limnichidae), Psephenoidea (Psephenidae, Callirhipidae, Eulichadidae, Cneoglossidae, Ptilodactylidae, Chelonatidae), Elgteroidea (Rhinorhipidae, Arternatopidar, Elsteride, Cebrionidae, Cerophytidae, Thtoscidae, Eucne ${ }^{\text {midaae, Brachypsectridae, Plasto- }}$ ceridae, as well as the farmlies of the superlamily Cantharoidea accepted by numerous specialists).

The concept of Elateriformia used in this paper corresponds to the "elateriform lineage" ol Lawrence and Newton I1982 and the iniraorder Elateromorpha of Ponomarenko and Zherikhim [1988) however one of us (JFL) wiuld exclude Scarabseoidea from that assemblage [Kukalova-Peck, Lawrence, 1993]. What seems notevorthy in this connection is that the traditional view of a probably riparian origin of Elateriformis [e,g, Crowson, 1982; Lawrence, New: ton, 1982; Kirejtstuk, I991, etc.], which we share, implies that the new form described herein is to be treated as a relict that has retained certain archaic tralts not only in its morphology, but also in its bjology (see below).

Declinia differs from the superfamily Eucinetoldea sensu Lawience [1988] both by the rather broad prosternal process not less than $0.4-0.5$ times as broad as the coxal transverse diameter (the process is much narrower in the Eucinetoidea) and by the broad mesisternal process only ca. 0.5-0.6 times as broad as the coxal transverse diameter. Also, the procoxaz in Declinia are non-protruding. the metepisterna are somewhat more elongate (ca. $2.6 \cdot 2.7$ times as long as broad) than in most Eucinetoidea. The antennae with five slightly serrate and dilated preapical segments also distinguishes Declinia from all Eucinetoidea known to us. The very deep antennal groove on the ventral side of the head strongly resembles that in Neyr Zealand Atopidinae of the family Scirtidae, but in DecItnia it is more narrow and fails to reach the mandibles. Indeed, it is the superfamily Eucinetoidea that Declintia seems to be quite closely relsted to.

Judging from the patterns of wing venation and folding let. Kukalova-Peck, Lawrence, 1993], the presence of an anal lobe on the wing, the structure of the metendosterite, tarsl, and some other festures.

Unlike Dascilloides, Declinia has neither median endocarina (on head) nor exocone omimatidla, the sensory elements on the antennae begin irom the antennomere 5, not 3, as in Dascilloidea. The lateral processes of the metendosternite in Dectinia are more strongly developed, and both pro and mesocoxae are more strongly separated (see above under Eucinetoidea), as compared to Dascilloidea,

From most of Byrrhoidea (except for the Elmidae Which differ in having s byrrhoid type of wing folding and long, slender tarsi), Declinid differs in the elytral epipleurg more or less gradually tapering at about level of the abdominal ventrile 1 (but then ayain rather strongly broadening toward the apex, this being developed to such an extent in neither Eimidae nor any other genus of Elateriformla stuctied by us), dascillold type of wing lolding (occurring only in few Buprestidee which, like other members of the farnily, are always distinguishable, however, by the membranous lobes on the larsi, by the prostemum th front oi the procoxae comparatively long, not shorter than the prostemal process), etc:

Decilnia dilfers from Psephenoidea by the nonexoctone type of ommatidia, presence of sensory clements on the antennae starting from antennomere 5, more or less traceable transverse metathoracic suture (present only in some Psephenidae), long lateral branches of the metendosternite (characteristic of some Ptilodactylidae only), dascilliod pattern of wing folding (uncharacteristic ol Psephenoides), etc.

Finally, Declinia difiers from Elateroidea by the non-exocone type of ommatidia (alse characieristic of Euenemidae, which are distinguished, however. by the absence of a separated labrum, invariable presence of a strongly developed ventral interlockIng device of the pro- and mesothorax, etc.), more or less evident transverse metasternal suture, dascilliold pattern of wing folding (instead of an elateroid one in all Elateroidea but Artematopidae, the latter lamily being well-distinguishable by the elytral ventral interlocking tongue and membranous lobes on the tarsi), 9 abdominal sternite 8 without a narrow, rad-like "spiculum ventrale" characteristic both of all Elateroidea but Rhinorhipidae and of all Psephenoidea but Psephenidae.

The Cantharoides (considered as a series of families within Elateroides by Lawrence [1988]) differ Irom Declinia by the long mandibles (2-3
(limes as long as broad), exocone type of ommatidia, elateroid pattern of wing folding, strongly reduced or totally sbsent intercoxal process of abdomninat ventrite 1.

An evaluation of phylogenetic relationships of the new genus under study with other beetle groups is hampered by the presence in our material of neither males nor larvae of Declinia relicta. Yet, as based on a provisional analysis of 75 mmaginal characters (Characters 1-64, 72-82 from the character matrix used by Lawrence [1988]), we consider the Declinildae Fam.n. as more closely related to Eucinetoidea, Dascilloidea, Byrrhojdes and Psephenoidea than to Elateroidea and Cantharoidea. Incorporation of the Decliniidae into a superimmilly is rather problematic. There seem to be three alternatives reflecting the most probable taxonomic position of the Decliniidae: It can be incorporated either into the Eyrrhoidea s.l. or into the Eucinetoides, or it ean be intermediate between these groups and, perhaps even given the rank of an independent superiamily, placed near their common stem.

A more profound phylogenetic analysis by the same authors of these relationships will be the subject of a separate publicstion [Lawrence et al., in preparation). It will be partly based on the following presumed plesio- vs. apomorphies of Declinia.

The maln plestomorphies oi the Declinlidae: eucone or acone type of ommatidia; well-developed labrum and mandibles; mola more or less evident, though nol sharply expressed; maxillary lobes more or less well-developed; Irontoclypeal suture and lateral pronotal rim developed; rear comers of pronotum nelther extended nor pointed, ventral interlacking device of pro and mesothorax orly poorly developed; propleuron very well-developed and external, with an anterior pleural flange extend ing forward and lying in between notum and stemum at fore edge of prothorax (a condition unique in Polyphaga but occurring in Archostemata, Adephaga and Myxophaga); procoxae transverse, not protruding, their trochantins well-expressed; rear margin of prosternal process unmodIfied; mesothoracic cavity well-developed; elytral ventral interlocking tongue absent: elytral epipleura well-developed throughout their length (uncertain); transyerse metasternal suture more or less welldeveloped; longitudinal metasternal suture welldeveloped; mesocoxal cavitjes partly slosed by metepisterna (usually occurring in non-Polyphaga and only rarely in Polyphaga); metacoxal plates well-expressed; tarsi without membranous lobes: tarsomere 4 bilobed below and not reduced; claws simple; radial cell more or less well-expressed
(although outline of its interior crossvein not very distinct); wing folding of a dascillold pattern (uncertain); Intercoxal process of abdominal ventrite I more or less well-developed; ovipositor moderately long, with distinetly separated coxites; q abdominal segment 8 with neither narrow stylifiorm "spiculum ventrale" nor pair of anterolateral projections; pair of colleterial glands absent; complex accessory gland absent.

The main presumed apomorphies of the Decliniidae: absence of endocarina; short mandibles with a unidentate apex; very deep antennal groove; live more or less serrulate dilated antennomeres; mentum very well-developed, covering mouthparts from below making them almost invisible (also occurring In some Artematopidae); elytra without wellexpressed rows of punctures (bat translucent rows of punctures remaining); tibial spurs strongly reduced; wing venation reduced, with radial cell indistinetly closed, wedge cell absent and anal lobe present; tarsi very short as compared to tibliae (perhaps another apomorphy); three ventrites connate: spiracle on abdominal segment 8 reduced: bursa with a scerotized plate and lying well anterior to common oviduct.

As noted above, Declinia occupies a position intermediate between certain basal Elateriformia and the superfamily Eucinetoidea sensu Lawrence [1988]. Due to a unique combination of Jeatures of various superlamilies, it certainly watrants the rank of a separate family, although its ultimate position is still unclear.

Lowrence [19881 based his cladistic analysis of the Elaterilormia on 87 imaginal and 24 larval characters. However, he confessed himself that removal even of a few larval features from analysis would lead to certain changes and recombinations in his system, making the latier look more like that of Crowson II971, 1972, 1973, 1978, 1981, 1982].

It is noteworthy that one of the most "ragile* groups readify collapsing if only a few parameters are changed (e. g. removal of some larval charasters) is the Psepherioidea. Similarly, the lamillat composition of Elateroiden is not finally settied, judged alone from the status of the Artematopidae. Like the psephenoid complex which is sometimes still treated within the superiamily Dryopoidea Isensu Crowson, 1981; Lawrence, 1991: 182], the Artematopidae was first referred to the family Dascillidae [Jacobson, $1905-16$; Arnett, 1973; etc.]. later to a superfamily of its own, Artematopoidea, also encompassing the Callirhipidae and Brachypsectridae [Crowson, 1973, 1981].

At present, both Aftematopidae and Brachypsectridne are oflen placed within the superfamily

Elateroides (Lawtence, 1988, 1991), this in part being based on larval characters.

All the sbove demonstrates unstable allocations of a number of elaterifiorm lamilies, this additionally hampering the comprehension of the phyletic relatoonships of Declinidae and some other lamilles.

As noted above, we have neither male nor larva of Decilinta relicta at our disposal. The female, however, seems to display a number of unique combinations shared with none of the other elaterHform or eucinetoid lamilies. Some of such features are absent from Lawrence's [1988] tharacter matrix, some more could not be checked throughout the constituent geners due to unavailability of comparative material. These characters are as follows: head brond, semi-circular in dorsal view, sts posterlor hall strongly drawn forward and somewhat down. its anterior half directed down; antennal grooves very deep but relatively narrow, reaching to rear margin of head; transverse ridge behind the tempora is much less distinct, especially ventrally, where the ridge in Scirtidae; live preaplcal antennomeres asymmetrically distinctily eniarged; mentum very well-developed, covering the miouthparts from below; pro- and mesosternal processes broad, latter process divided by a longintudinal suture; pro- and mesolemora more or less triangularty enlarged loward middle of exterior margin: tibiae rather slender, fitting Into femora; tarsi very short (a third as long as tibiee), not fitting finto tibiae, considerably enlarged, with al least penultimate tarsomere distinctly bilobed; elytral epipleura first more or less gradually tapering near base of abdomen, then again rather strongly broadening toward abdominal apex; transverse metasternal suture more or less visible; metepisterma and elytral epipleura at base with more or less well-developed impressions for mesolemora to fit into.

In dorsal aspect, the beetle resembles also some Scirtidae but, viewed ventraily, it looks more like various families of the Byrrhoidea and Elaterlodea and some lamilies of the Psephenoidea, stilil exhibIting a number of differences from all of them (see above), In addition to certain Elateriformia, Declinia also resembles members of such lamilies as Nosodendridae (Derodontoidea), Dermestidae or Anobidae (Bostrichoidea) sensu Lawrence [199I],

In contrast to Nosodendridae (including only the genus Nosodendron), Declinia has a lypognathous, not prograthous, head, its antennae are attached freely and remain uncoyered by a latera!. projecting margin of the frons, as is the case in Nosodendildae, and the antennae lack a 3-segmenIed asymmetrical club. Similarikies in the wing are probably plesiomorphic, whereas thase involving the thorax. legs and mouthparts all appear to be
adaptations involving body compaction and concealment/protection of appendages.

The Dermestidae we know of either have a head distinctly bent down or an ocellus between the eyes, the latter character being usually combined with the lormer. A dermestid larsus is longer, proportionate to tibiae, more than a third as long, without transversely enlarged tarsomeres. In contrast, the posterior half of the head in Dectinia is drawn forward and somewhat down, while the anterior hall is bent down: there is no ocellus between the eyes.

Unlike Decllinia, the Anobiidae we are lamiliar with bave no or almost no elytral epipleura, while usually the head is more or less strongly bent down.

4. Biological observations,

Personal biological observations are restricted to the fact that the beetle Declinia relicta has been captured solely by screen window-trapping in forest communities on swampy soils in the southern Maritime Prov., Russian Far East. Flying beetles were observed from the end oI May until July, being perhaps riparian in their bionomics. Apparently, Declinia relicta is not associated with running water, displaying no elmid-like leg structure.

5. Conclusions.

Summing up, the lollowing general ideas on the presumed origin of Decliniidae can be presented here. Quite possibly, this family might have eyolved From a group close to Eucinetoidea, not inconceivably Scirtidae within this superlamily, which we regard alter Lawrence [1988] also as a possible ancestor of the entire Elateriformia complex. Hence, Declinia relicta, this obviously rellict tragment of the Decliniidae, could have originated from a scir-tidae-like ancestor as an independent lineage, perhaps even ol a superfamilial rank, from the common ancestor of the Byrrhoidea s.l., the Buprestidae. Byrrhidae and dryopoid complex proper included. The fact that the male and larvae are unknown prevents any more conclusive analysis.

As noted above, a cladistic analysis of the relationships of Decliniidae among the Polyphaga is in preparation.

6. Acknowledgements,

We should like to extend our deep gratitude to Dr. D. Fedorenko, Mr. S, Kurbatov (both Moscow) and Dr, O. Kabakov (St.-Petersburg) for donating us their specimens, Dr. M. Brendell (The Natural History Museum, London) for loaning some comparative material oi Scirtidae under his care, Dr. R. Crowson (University of Glasgow) lor sharing his opinions, and Dr. S. Golovatch (Moscow) for checking the English of the final draft. We also acknowiedge C. Beaton (CSIRO Division of Entomology) and S. Caveney (University of Western Ontario) for the preparation and interpretation of ommatidial structure, and M. Horak and R. B. Halliday for critically reviewing an earlier draft of this manuscript.

7. References.

Amett R 1973. The beetles of the United States // Michigan: 1112 pp .
Crowson R.A. 1971. Observations on the superiamily Dascilloidea (Coleoptera: Polyphaga). with the inclusion of Karumildae and Rehipiceridae // Zool. J. Linn. Soc. Vol. 50, P.15-19.
Crowson R.A. 1972. Review of the classilieation of Cantharoidea (Coleoptera), with the delinition of two new lamilies, Cneoglossidat and Omethidae // Rev. Unik Madrid. Yol.21. No.82. P.32-37.
Crowson R.A. 1973. On a new superiamily Artemalopoidea of polyphagan beetles, with the delinition of twe new lossil genere from the Batic Amber / / J. nat. Histi. Vol.7. P225.238.
Crowson R.A. 1978. Problems of phylogenetic relationships in Dryopoidea (Coleoptera) // Ent Germi Vol. 1 (3/4). P.250-257.

Crowson R.A. 1981. The biology of Coleoptern // Aciademie Press, London 802 pp .
Crowson R.A. 1982. On the dryopoid allinilies of Buprestidat / Coleopt. Bull. Vol36. No.I. P.22-25.
Jacobson G.G. $1905-1916$. The betles of Runda and Westem Europe! // Devrien Publrs, St.-Fetersburg. 1024 p. In Russian!
Kirejishuk A.G. 1991. Evolution of mode of life as the base lof division of the beelles into groups of high taxonomic rank $/ /$ In. Advances in coleopterology- Assoc. Europ. Coleoplerot., Batcelona. P. 249262.
Kukalova Peek J., Lawrence J.F. 1953. Evolation of the hind wing in Coleoptera / / Carad. Entomol. Vol.125.No.2. P.181-258.
Lawrence J.F. 1988. Rhinorhipidae, a new beelle lamily from Australis, with comments on the phylogeny of the ElatetIformia / / Invertebrate Taxonomy Vol. 2 (1987). P.1.53.
Lawtence J.F. 1991. Order Coleoptera // In: Stehr, F.W. (ed.): Immature insects-Kendail/Hunt Publ. Co, Vol.2 P. 144-185,
Lawrence J.F., Newion, A.F, 1982 Evolution and classilication of beefles //Amn. Rev, Ecol Syst. Vol. 13. P261-290,
Ponomarenko $A, G_{,}$, Zherikhin. V.V. 1980 [Order Scarabaelda. - Coleoptera, or beelies) / / Im Trudy Paleontol. Inst. AN SSSR. Vol. 175 : P.7G-84 In Rutaian)

