A. G. KIREJTSHUK (USSR)

Ways of formation of anthophily among beetles

Many meture beetles ad many other ingocte of recont abundant ocriert foed on flowers of algh plants often acting berowith as their pollinators. This mutual relation is unually oalled as elther anthophlify (or more precisely anthophagy) or ontomophlly depending on whethar dealing with inseote or plente. As it is argued by many authors this -alation wan oxiremaly productive at aoma etages of Mitorie development of both plante (ROBERTSON, 1904; DIE1S, 1910; TAKHTADJAN, 1934; 1070 and otherv) and Insecte. Including beotles ($6 . e$. GRINFELD, 1978; RODENDORF, 19A0). The tranimission of pollen or microapores as woll sis spores is noted not only for Angiospermas but also for Gymboapermae, Pterophyta, Bryohtyta and Fungl iser revlowa: FEORI a, vah dar PLith 1982, CARTER, 1963).

Anthophagy is rather common among many colooptorous troupz so mueh so that it eevmin quite obviout that anthophilioua forms had to ariso independently. It is aiso ovideat that ways of formation of anthopsilious mode of life could be readily distinguished in difforent beetle tineagee. 80 far al it follows from lossil recorde recently interpreted by PONOMARENKO \& ZHERICHIN (1980), she pollino- or apermatophagy developed even before phyltophay proper, the problets of development of eating the generative organs of high plante la likely to be immadiately coonected with the problem of development of eating living high plante te a whole.

It ia posalble to divide all the cases of anchophagy into two forma: 1) Imagtanal and 2) oome plete if all active Instars feed on cenerative plant organs, sueh cases ere observed in Nitiduilidee, Phalecridac, Nemoaychide, Curculionidice and orbery) Ecological and trophio diversence of ave oral coleopterous groups as well as probably numerous secondary trasoltions to asthophaty make diffleutt to olear up how anthophilous forms Initially arope and siso their relatioaship with their posatblo aricestors.

The Nitsdulidae otudied by the author in detall present a goaeralized Cueujoid family and aossiot of 6 eubfamilies, 4 of which are eliher entirely foricolous or comprise aome forme aseoelated with fowert. Primary food for archaic Nitidulida Included apponrankly aportes and hyphae of the fungl and silme moulds (Mynophyta). These anolent forme fed also oo termenting sap exuding from trees juat as do modern Nitidulinae, Carpophilioate, Cryptarchipad and Caloneorinae. Sap feeding is common and yet facultative for adulte of ming recent spectes white for the Calooeorinae if is the oniy known esurce for both adults and larvae. The Nitiduliame are moek diverae and of the same time they thave the largest numbera of eympleaiomorphite (XIREJTSHUK, 10s2) smong Nitidulids. This uubfamily are mataly fungivoroun but some of thefr repreasatativer are acevengers on decayed organic matter, Inquilines in ant nent, furthermore flower- and oven leal-consume er6. Within the subfamily thort art at least 3 Independent lineages attaining obligate anthophacy. One of them la represented in a primitive and hardly modified Epuraes genera-complex. Adulta of some Epuraca speoies wre common visitore of nowers, probably foeding on pollen (imagiaal asthe phagy), but thelr derivative allies, the genera Haptoncus, Haptoncogathus, Myatrogs and othere anthophingous in Imaginal inatar or many aro completely anthophagous of both adulse and farvies. The secood lineage leading to anthophagy gave the Acthina genera-complox, where there are a number of adult poifen-feeders but no completely anthophagous apecies. The bighty apeciallsed Anister apecies with obscure kiaship, though may be related to Acthing-complen are known to be leaf-mining of both larvee and Imagoes (f.e. JELiNEK. 1981). Third Lipeage io pregented by the Crchramus generazoomplon among whloh imoginal asthophtly soema to be rather commoa and an least Xencetrongyllus apecies of thin complex beoame completely phytophagous with larves Iesfmining and edults skeletoaisling the lower opidermis of leaves of toeding oe plent surfiet, firugoter-

Iy on flowers. The subfamtly Carpophllinge are also generaliy mycetophagous, most common under bark, rotten wood and fruits infeated by fungl, fermenting tree sap ater, but adulte of some specles (θ, g, the Paleaxctic Carpophilis chalybaeus Murr., some of its Nearctic and many of its tropical oongeners as well) collected on flowers only, probably feed on pollen. The subfamily Cryptarchinge are almost entirely mycetophilous and some of them are observed as predators in subcortical habitats. The archaic and yet specfalised subfemily Kateretinge contain anthophagous forms, but some larvas feed in gynaeceum and later in immature Irults or seeds. At last the Meligethinas sre widespread, except South Ameriea, and fairly tommon pollen-feeders on flowers, but adults of some primitive representatives from troplcal Africa (f,i, Mstapria and Microporas speciea) are known as usual vialtors of soft frutts, and cogasionally of those begineing to decay (sach as Treculle spp.). It is worth to notice that all known anthophagous laryae have many festures rather similar to those of Cocinellidae and even Chrysomelidas (Bes f.e. BÖVING \& CRAIGHEAD, 1931; CROWSON, 1955; GILLOGLY, 1962).

Following from the above date we may suggest a fastion of trophic trangformation within the Nitidulidae, Complete myoetophagy, in a broad sense, gave rise first to imagingt enthophegy, which led, in turn, to complete anthophagy with larval feeding on gynaeceum as well as immatare fruita and seeds and then thene appeared a posalble basts for a tranaltion to lsaf-mining, L.e. phyllaphagy proper. This way it bears come resemblance to that in \$ymphyta (Hymenoptera). The Imaginal and next somptete anthophagy are the more possible that sporea of the archalc groupe of the high plantz as well as, appesrently, pollen of the advanced ones seem to pregerve in gemeral a constderable chemtesi similarity to the fungai spores. Psrhaps, both anthophagy and entomophily (or centharophily) of plants should be aimultaneously forming at the primary atage of imaginal anthophily.

Such a trophic transformation, as far as I know, has not yet attracted the attention of inveatigators of beetles, although somewhat alonilar view on close liuks of saprophagy and anthophily (f.e, GRINEELD, 1978) or on tranaition from mycetophagy In roten wood to imaginal anthophagy is as anctont as recent beeties (PONOMARENKO, 1969; CROWSON, 1981 and so on) were yet proposed. Nevertheless, CROWSON In hat last generallifing woris (1981) pointed out waye of formation of herbseeous beetles conflicted with the fashlon estabtiahed in the Nitidulidae, He concludea that phytophagous beetles were originated from mycetophagous subcortical forms through boring first Inside dead and later in Uiving wood, or from the same mycetophilous forms through an intermedigite stage of feedtug on fungt atticking herbeceous plante of sssociated with honey-dew exuded "by Homoptera,

We may, however, assume that the way of trophic transformation established for Nitidulidge could frequently have occurred elso in other bettie farnilies. This way does not exclude that one drawn up by CROWSON, but both appear to be equally poszible and had likely taken place in historic development of different groups.

Imaginal anthophtily with larval mycetophily arose ln anclent Archostemata primarily completeLy mycetophagous. At least recent Cupedidae ratiar similar to fossil ones diaplay the same mode of life, Except Nuttdulddae and Cupedidae this is shown also in Dagoilldage, Lyctdae, Phalacridae, perhaps Alleculidae, Mordelidae, Oedemeridae, Anthribidae, it may be possible that this habit aiso characterized ancient Scarabaeoldea so far as the Mesozolc ones were likely to be the maln mycetophilous (PONOMARENKO \& ZHERIC日IN, 1990).

Apart from the Nitidulidae the second stage, i, e. complete anthophagy initialiy sppeared occurs also In Boganitdae, Lenguridae, Erotyltdae (Including Pharaxonothidae appearently dwelling In male cones of Cycadaceae), Mycetophagrdae, Anthribidae, Nemonychidae, Oxycorinidae, AttoleBldae and perhaps Phalacridae, it is important to note that among the anthophtious forms retaining thte etage ont1 today there is a number of atroble-dwellers on various Gymnospermae, inoluding the Cyadalss very prominent in the Jurassic fossils and the Coniferales as well. Moreover, many of the forms from these families or their probable ancestors are known juat from the Jurassic (ARNOLDI and other, 1977; CROWSON, 1981), It to seen that the mentioned groups are regarded as phyletic branches united into one of chief atooks of Polyphege (Cucujfiormle).

The third atage of trophic transtormation led ta phylophagy through anthophagy comprises phytophagoue Taryas and atill anthophagous adilta. It coneerns Nittdulidas, Byturidae, Attelabidae as well as perhaps Phalacrideg, Mordellidae and Bruchidae. If so, the Nitdduld trophic transformation could have indeed taken place in the past (ilkely yet in the Triassto) of meny families of Cucujoidea and Curculionoldea. It regards also, perhaps, authophifous groups of the Chrysome-toidea which at that time were present by Chrysomelidae and Cerambycidae and posatbly Bruchidas,
appearently also anscelated with the Jurassic Gymnospermic, Suoh an easumption is pospibte by taking into constderation the Jdeas of BOVVING \& CRAIGHEAD (1031), 由e woll as LAWRENCE \& NEWTON (1982), on the phylogeny of this buperiamily and alse that the Bruchid-like feeding could be a primary aype of trophic of the archaic Chrysomelodi forms but not of Cerambyeld-1tke one which follows from CROWSOX's viewpoine. At least one known fact: the abatantioa of Bruchid tomales from ovipositing before pollen-oating supports an anclent dovelopment of thetr anthophagy.

The next way of the formation of Imeginal anthophngy is from phytophagy as it uppenrest in CROWSON's conclusion. It might occur in Buprestotdoa and Elatoroldea foch Elateriformiah. A simflat way seemed to be in some advanced Chrysomolidae, probably Aplonidae and other derivatlve Curculfonidea an zecondary tranatuion from phyllophagy, formorly srose through an fatcial mathophagy passed by their ancient ancestort.

The third poasible way of the formation of imaginal anthophegy oonstats ta a tranuition to it from intial predation. GRINFELD (1978) confrmed it with numerous data. Tbil is probably ehatacteristic for Staphylinoldea, some Cantharoidea, many Cleridae and Molyridee of Cloroldea ad welf 1s, perhaps, some Cocolpellidae of Clavicornis and Anthioldee of Heteromera. This in come mon among unspectalized pradaceous groupa whioh did it + ge through "pre-adaptatiog" for peltenenting is due so their manetovoroun origin.

Some scavengers on organte matter of varloul nature paes also to imaginal nothophagy. This way was tikely pousible for the floricolons adulta of sifiphidas, Dermestidee and, perhape, AllodeHdet.

Finally, the appearence of smegtant anthoghagy in tho Meloldae with paroitic larvae lo attit unciear, but it is possibly corrolated with the ovolution tor mearghing of boete trom annoge antbephllowa Hymenopteris.
 199034 Leningrad, TSS8R

