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Abstract.—Growing concerns about the quality of aggregated biodiversity data are lowering trust 
in large-scale data networks. Aggregators frequently respond to quality concerns by 
recommending that biologists work with original data providers to correct errors "at the source".  
We show that this strategy falls systematically short of a full diagnosis of the underlying causes 
of distrust. In particular, trust in an aggregator is not just a feature of the data signal quality 
provided by the aggregator, but also a consequence of the social design of the aggregation 
process and the resulting power balance between data contributors and aggregators. The latter 
have created an accountability gap by downplaying the authorship and significance of the 
taxonomic hierarchies – frequently called "backbones" – they generate, and which are in effect 
novel classification theories that operate at the core of data-structuring process. The Darwin Core 
standard for sharing occurrence records plays an underappreciated role in maintaining the 
accountability gap, because this standard lacks the syntactic structure needed to preserve the 
taxonomic coherence of data packages submitted for aggregation, leading to inferences that no 
individual source would support. Since high-quality data packages can mirror competing and 
conflicting classifications, i.e., unsettled systematic research, this plurality must be 
accommodated in the design of biodiversity data integration. Looking forward, a key directive is 
to develop new technical pathways and social incentives for experts to contribute directly to the 
validation of taxonomically coherent data packages as part of a greater, trustworthy aggregation 
process. 
 
 
 
 
 
 
 
 

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/157214doi: bioRxiv preprint first posted online Jun. 28, 2017; 

http://dx.doi.org/10.1101/157214
http://creativecommons.org/licenses/by-nc/4.0/


   Many fundamental problems in biology rely on data about the locations and traits of naturally 
occurring organisms classified according to taxonomic categories. These occurrence records 
(Wieczorek et al. 2012) are often tied to vouchered observations or specimen depositions with 
provenance from natural history collections, legacy publications, data repositories, and ongoing 
inventories. Numerous projects are bringing occurrence records into the realm of modern data 
science (e.g. Bisby 2000; Baker 2011; Blagoderov et al. 2012; Meyer et al. 2015; Peterson et al. 
2015). This process involves multiple levels of data creation and aggregation to enable the 
synthesis of biodiversity data patterns and trends at greater scales (e.g. Jetz et al. 2012; Wheeler 
et al. 2012; Franklin et al. 2017). However, there is a widespread sense that aggregated 
biodiversity data should be used with caution because they are frequently of insufficient quality 
to support reliable inferences. 
   Dozens of studies have found quality shortcomings in aggregated occurrence datasets; 
including Soberón et al. 2002; Graham et al. 2004; Por 2007; Yesson et al. 2007; Bortolus 2008; 
Page 2008; Hill et al. 2010; Costello et al. 2012; Ballesteros-Mejia et al. 2013; Belbin et al. 
2013; Faith et al. 2013; Gaji et al. 2013; Mesibov 2013; Otegui et al. 2013a, 2013b; Beck et al. 
2014; Ferro and Flick 2015; García-Roselló et al. 2015; Harding et al. 2015; Maldonado et al. 
2015; Franz et al. 2016a, 2016b; Gueta et al. 2016; Sikes et al. 2016; Smith et al. 2016; Stropp et 
al. 2016; Wiser 2016; Zermoglio et al. 2016; and Franklin et al. 2017. The growing concerns are 
leading to reduced trust in the aggregators' data, and thereby also reduce the data's scientific use 
and societal impact (Turel and Gefen 2015). 
   Biodiversity data aggregators frequently respond to quality concerns by recommending that 
biologists work with the original providers of the data to correct errors at the source (e.g., Belbin 
et al. 2013). This argument is exemplified by Sikes et al.'s (2016: 149) response to Ferro and 
Flick (2015): "[W]e have heard some taxonomists state they do not want to share data with GIBF 
[the Global Biodiversity Information Facility] because they distrust the quality of the data in 
GBIF. This latter point seems illogical. The data in GBIF are the data from the museums that 
provide data. If the data in GBIF are not to be trusted then neither are the data in the source 
museums. It thus seems illogical to be pro-museum and anti-GBIF." 
   We show that this strategy of allocating responsibilities for data quality falls systematically 
short of a full diagnosis of the underlying causes, because it fails to make sense of an important 
way in which many biologists have come to mistrust aggregators. In contrast, we will argue that 
the distrust held for biodiversity data aggregators is justified once we recognize that these 
aggregators have allocated responsibility in a way that holds no one accountable for the accuracy 
of the taxonomic hierarchies operating at the core of their data-structuring process. 
   On the surface, aggregators appear to recognize the need for such accountability (Belbin et al. 
2013: 73): "What ideally is needed is an environment created by agencies such as GBIF and 
ALA [the Atlas of Living Australia] that efficiently enables" the exposure, discussion, and 
correction of "errors directly in all relevant locations". The authors acknowledge that "[n]o such 
environment currently exists", and "[p]rogress will be limited while the underlying culture of 
data publishing and data management does not support stable, long-term reference to each data 
record and community-based curation of those data in a way that ensures that each act of 
correcting any aspect of any data element is not lost but contributes to the development of a 
global digital biodiversity knowledgebase" (Belbin et al. 2013: 73–74; emphasis added). 
   Here we demonstrate that in practice aggregators have made fundamental design choices that 
lower trust in the aggregation process and outcome, by excluding taxonomic classification as an 
aspect of biodiversity knowledge worthy of being represented and preserved. Looking ahead, we 
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need new solutions for biodiversity data aggregation that are capable of handling common 
situations in which research communities and information providers endorse incongruent 
systematic hypotheses. Based on our diagnosis, we recommend shifting the balance of power to 
license trustworthy data packages away from biodiversity aggregators and towards individual 
expert authors. 
 

No Simple Diagnosis for Data Quality Deficiencies 
 
   It is not uncommon for researchers to think of the challenge of aggregating data within a single 
information system as a primarily technical endeavor without deeper scientific significance. 
Careful studies have shown, however, that database systems constrain as well as enable science. 
They have the power to channel research; e.g. by making some questions harder to ask, by 
entrenching certain presuppositions into their design, and by placing new burdens on 
participation on the research community (Bowker 2000; Strasser 2010; Edwards et al. 2011; 
Leonelli 2013, 2016; Millerand et al. 2013). Implementing data aggregation systems therefore 
places one in a position of responsibility and trust for the larger community – a status that is at 
times novel for researchers who by training are more focused on the domain-specific aspects of 
science than social engineering. Abstract notions of responsibility become concrete, however, 
when they intersect with the ways that an aggregation system handles the process of correcting 
or avoiding data quality deficiencies. 
   We take the presence of a growing corpus of critical studies, such as those cited above, as 
evidence that researchers are becoming increasingly cautious about relying on aggregators. Other 
biologists are bound to notice and may be deterred by the costs or expertise required to carry out 
the necessary additional quality vetting. That said, the helpful term "fitness-for-use" (Hill et al. 
2010) reminds us that certain deficiencies can be acceptable to researchers whose inference 
needs are robust to them. Many biodiversity data packages and analytical needs will match up 
well in this sense. Nonetheless, providing data that are just clean enough for coarse-grained 
inferences is not a way to deal with the root issues limiting trust. 
   All parties have an interest in precise diagnoses of where the responsibilities for specific data 
deficiencies lie. Aggregators are not helped in the long run by a narrative of accountability that is 
too broadly formulated to allow each party to play an appropriate role in overcoming the issues. 
Accordingly, and given the complexity of the aggregation process, the question of who is 
responsible for creating and fixing deficiencies cannot have a simple, univocal answer. A 
common aggregation path for an occurrence record includes individuals recording the original 
data and metadata at the time of collection, transcribing the record from field notes into the 
source collection's local database, and applying further data and transformations – such as 
georeferencing and taxonomic identification – to comply with locally accepted conventions. 
Often, the collection will transfer the record to a regional, mid-level aggregator, which may then 
transmit the information again to a higher-level aggregrator. Alterations of 'the record' can occur 
at any stage along this provenance chain, and have the potential to affect the identity of the 
record and its empirical signal. 
   Responsibilities for generating and repairing quality issues are not uniformly distributed across 
the data aggregation chain. Correcting a false collecting date would typically be the 
responsibility of individuals with knowledge of the original collecting event. Dealing with 
repeated duplications of records through aggregation, in turn, is a task better suited for 
aggregators. Two examples illustrate this point. First, in their response to Mesibov's (2013) audit 
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of aggregated data on Australian millipedes, Belbin et al. (2013) – representing the aggregator's 
perspective – provide a table with 44 automated quality checks performed by ALA (Belbin and 
Williams, 2016). The five most frequent categories of error, respectively affecting 18.6–90.2% 
of the records, are all related to georeferencing. Second, Hjarding et al. (2015), in their 
assessment of records of East African chameleons served by GBIF (Edwards 2004), conclude 
that 99.9% "used outdated taxonomy" that would have led to inadequate threat category 
assignments for eight taxa. 
   To extend the point about diagnostic precision further, Darwin Core (DwC), the prevailing 
global standard for sharing occurrence records, has seven main categories (Wieczorek et al. 
2012). Of these, Event (when), Location (where), and Taxon (what) are the primary data blocks 
where insufficient quality will affect inferences of biodiversity distributions. How abundant and 
significant the shortcomings are varies from case to case. 
 

Importance of Trust for Sustained Use 
 
   Trust is a complex and context-sensitive concept (Hardwig 1991; Fricker 2007; Sperber et al. 
2010; Wagenknecht 2016; Fellows 2017). Our use of this concept will be anchored in two core 
assumptions. First, trust is a dependence relation between a person or organization and another 
person or organization. The first agent depends on the second one to do something important for 
it. An individual molecular phylogeneticist, for example, may rely on GenBank (Clark et al. 
2016) to maintain an up-to-date collection of DNA sequences, because developing such a 
resource on her own would be cost prohibitive and redundant. Second, a relation of dependence 
is elevated to being one of trust when the first agent cannot control or validate the second agent's 
actions. This might be because the first agent lacks the knowledge or skills to perform the 
relevant task, or because it would be too costly to check. Historically, when phylogeneticists 
published individual gene sequences or alignments in their research articles, one could actually 
check 'by hand' whether a GenBank entry was correct (Strasser 2010, 2011). Nowadays, few 
biologists are able to validate 'directly' whether a genome sequence was correctly assembled 
from next-generation sequencing data. 
   Trusting someone means being in a position of dependence, but not necessarily that one is 
defenseless. Instead, individuals often rely on higher-order signals about an agent's reliability 
and competence, which need not hinge on knowing what that agent knows or being there to see 
what that agent actually does (Hardwig 1985; Fricker 2007; Carrier 2010). Talking to biologists 
who have worked with an aggregator's data in the past, for instance, is a common way to learn 
whether these data can be trusted as accurate and for what purposes. Thus the critical studies 
cited above are valuable in part because they move the experience of working with aggregated 
data into the public domain. Reading these articles is analogous to reading on-line reviews about 
a contractor's performance on past jobs. 
   However, it is arguably at least as important to know what an agent does when a task goes 
wrong, particularly for complex tasks like building a house or a higher-level biodiversity data 
aggregation service. Trust, then, is tied to more than just the intrinsic accuracy of the data; it also 
depends critically on how the trusted agent responds to negative outcomes – whether due to 
epistemic disagreements, honest errors, unanticipated difficulties, or negligence (Carrier 2010; 
de Cruz and de Smedt 2013; Winsberg et al. 2015). Trust will be especially low if there are stark 
discrepancies between (1) an agent's actual contribution to perceived data deficiencies and (2) 
the degree of responsibility that this agent acknowledges for that contribution. More succinctly, 
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trust is lowered when there is a mismatch between "guilt" and "admission" – i.e., an 
accountability gap – in the context of data shortcomings. Transparency about ongoing progress 
or known problems is often crucial to cementing an ongoing relationship of trust, because it 
demonstrates that the trusted agent is willing to pay the cost of generating regular reports 
(Dourish 2001; Morris et al. 2013). Some aggregators are intentionally transparent about letting 
experts identify data deficiencies by allowing the flagging of records with perceived problems 
(Gries et al. 2014; Belbin and Williams 2016). 
 

Matching Accountability to Responsibility 
 
   It is especially harmful if the trusted agent creates new problems in an area of central concern 
to those relying on it, while refusing to be held accountable for correcting them. We will argue 
that this is the case with the generation of synthetic taxonomic classifications and phylogenies – 
so called "backbones" or "trees of life" – that prevail in many biodiversity data aggregation 
networks (e.g. Bisby 2000; Bisby and Roskov 2010; Hinchcliff et al. 2015; Jong et al. 2015; 
Vandepitte et al. 2015; GBIF Secretariat 2016). High-level choices in designing these 
environments routinely lead to the creation of novel hierarchical syntheses that re-structure the 
occurrence record data in scientifically significant ways (Leonelli 2013). In doing so, aggregators 
also systematically compromise established conventions of sharing and recognizing taxonomic 
work. Taxonomic experts play a critical role in licensing the formation of high-quality 
biodiversity data packages. Systems of accountability that undermine or downplay this role are 
bound to lower both expert participation and trust in the aggregation process. 
   It is pivotal, then, that aggregators have embraced a design paradigm that requires one 
hierarchy (at a time) to organize all occurrence data. The production of a unitary hierarchy is 
governed by feasibility constraints, such as computational complexity costs and institutional 
limits on sharing access to information, rather than principles based in best systematic theory and 
practice. In addition, achieving a unitary hierarchy requires aggregators to eliminate taxonomic 
conflict between data input sources. This often results in a hierarchy that no longer corresponds 
to the view of any particular source: it becomes a synthesis nobody believes in. Biologists 
frequently regard the quality of these novel classification theories as deficient. 
   Responsibilities for issues with aggregator-created synthetic classifications are not rightfully 
owned by any data-providing source. In particular, a one-time fix (adjustment) of the synthesis to 
match one source classification fails to correct an underlying design flaw: to achieve trustworthy 
bodies of data for biodiversity research and conservation, we need to manage each body of data 
as a coherent whole, not just as an aggregate that is somehow supposed to maintain unity at any 
scale. The process of aggregation is effectively designed to disrupt local data formation and unity 
constraints for each source (Fig. 1). 
   Whenever aggregation leads to unintended and undesirable consequences at the system level, a 
sustainable solution is to shift the distribution of powers between providers and aggregators that 
is entrenched in the system's design. Since high-quality data packages frequently mirror 
competing and conflicting classifications, i.e., unsettled systematic research, this plurality must 
be accommodated in the design of biodiversity data integration. 
 

Generation of Novel Systematic Syntheses 
 
   We use the term "systematic syntheses" as an encompassing term for different ways of  
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organizing biodiversity into hierarchies, ranging from Linnaean taxonomies to phylogenetic 
trees. Achieving systematic synthesis is the explicit goal of aggregators such as GBIF (GBIF 
Secretariat 2016), which assembles its classification from more than 50 sources which are 
themselves unitary systems for particular subdomains of life (e.g. Bisby and Roskov 2010; Peters 
and McClennen 2015; WoRMS Editorial Board 2017). 
   The aim to achieve one natural hierarchy is perhaps as old as systematics, remains valid today, 
and need not be dissected here. Similarly, the broader feasibility and merit of generating 
backbones have been discussed before in the present context (e.g. Bisby 2000; Godfray 2002; 
Scoble 2004; Godfray et al. 2007). The main, likely uncontroversial conclusion that we carry 
over from these exchanges, is this: in all instances where alternative, lower-level input 
classifications (subtrees) are available, it is necessary to select one schema over the alternative(s) 
to create the synthesis. This process often involves input from socially sanctioned individuals 
and committees, or (increasingly) the use of computer algorithms that resolve conflicts according 
to programmed criteria (Page and Valiente 2005; Hinchcliffe et al. 2015; Döring et al. 2016; 
Redelings and Holder 2016; Rees and Cranston 2017). 
   Regardless of whether achieved by committee or algorithm, systematic syntheses typically 
have unique histories of creation, and – by virtue of preserving the choices made to resolve 
conflicts – may include or exclude information about how life on earth is structured. In 
accordance with Leonelli (2013), these syntheses constitute novel classification theories. "Some 
classificatory systems systematically and synthetically express, rather than simply affect, 
knowledge obtained through scientific research, and they do it in a way that (1) is unique, since 
such knowledge is not formalized anywhere else in the same way; (2) has huge influence on 
knowledge-making practices; and (3) enables experimenters to make sense of the results they 
obtain. […] Articulating knowledge that enables scientists to assess and value their results is an 
achievement that goes well beyond listing a set of commonly used assumptions as a basis for 
further inquiry. In the latter case, existing knowledge is applied to put a given set of items into 
some order; in the former, existing knowledge is transformed and developed so as to facilitate 
the conceptual analysis of data" (Leonelli 2013: 344–345). 
   To give one example, the 2016 version of the GBIF taxonomy (GBIF Secretariat 2016), which 
is largely but not fully congruent with Ruggiero et al. (2015), recognizes 99 phyla in eight 
kingdoms. Of these, two phyla are in the Archaea sec. GBIF Secretariat (2016) and 29 phyla are 
in the Bacteria sec. GBIF Secretariat 2016 (we use the "sec." – according to – to specify the 
source's name usage; see Franz et al. 2016a, 2016b). Meanwhile, Hug et al.'s (2016) "new view 
of the tree of life" recognizes 26 phyla of Archaea sec. Hug et al. (2016) and 92 phyla of Bacteria 
sec. Hug et al. (2016). While Hug et al.'s (2016) hierarchy is more transparently advertised as an 
outcome of systematic inference than the GBIF taxonomy (GBIF Secretariat 2016), both are 
relevantly novel and unique in terms of their systematic content. Using one over the other meets 
Leonelli's (2013) criteria, i.e., such choices will influence how knowledge is transformed and 
how data analyses are facilitated. In short, by generating systematic syntheses, many aggregators 
are makers of novel theories that drive how these data enable inferential outcomes. 
   To give another example, primate taxonomy is arguably now experiencing a period of de-
stabilization, where the definitional boundaries of primate species remain subject to 
disagreement in the presence of increasing amounts of data and inference tools (Rylands and 
Mittermeier 2014; Franz et al. 2016b). The GBIF taxonomy has an influential function in this 
context, because newly indexed records whose identified species-level names are not endorsed 
by the hierarchy are 'matched' to it in one of two ways (Gaiji et al. 2013): either (1) names 
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recognized as invalid versions (synonyms) of valid names are replaced by those, or (2) names 
that are not recognized at all at the species level are represented only the next available higher 
rank (e.g. genus), with a "null value" at the species rank. 
   The act of modulating the taxonomic identity of an occurrence record is a form of scientific 
arbitration that differs from a mere "enabling" of that record for aggregation and retrieval. The 
act may challenge and overrule the original judgment of taxonomic validity at the same 
nomenclatural rank, or may altogether reject and change that rank assignment. Even if this is not 
the case, transformation of the original taxonomic identities of records to match the chosen 
hierarchy constrains these records to reflect exactly those taxonomic judgments endorsed by the 
hierarchy (Fig. 1). Inferences of species distributions or threat status depend on such constraints 
(Peterson and Navarro-Sigüenza 1999; Rylands and Mittermeier 2014; Franz et al. 2016a). 
 

Role of the Darwin Core Standard 
 
   The Darwin Core standard (Wieczorek et al. 2012) plays an underappreciated role in creating 
the accountability gap. Darwin Core competes in this context with another standard for 
exchanging biodiversity data: the Taxonomic Concept Transfer Schema (TCS; Kennedy et al. 
2006). The TCS has a more limited scope than DwC with regards to non-taxonomic meta-/data 
properties of occurrence records. Yet the TCS was specifically designed to represent and 
integrate change and conflict across systematic hierarchies (e.g. Kennedy et al. 2006; Franz et al. 
2008, 2016a, 2016b; Remsen 2016). One of the key TCS conventions is to manage "taxonomic 
concept labels", i.e., to consistently refer to name usages according to (sec.) a particular source. 
This allows the assembly of multiple coherent taxonomic hierarchies, each of which may assign 
incongruent meanings to the same or to overlapping sets of names, with one shared platform. 
The taxonomic concepts (theory regions) endorsed by each hierarchy can be articulated using the 
relationships of Region Connection Calculus (RCC–5), which are part of the TCS. Such an 
approach can yield logically consistent, multi-hierarchy reconciliation maps (alignments), 
without disrupting the perspective advocated by each data source (Lepage et al. 2014; Franz et 
al. 2016a, 2016b). 
   By processing biodiversity data primarily via DwC, aggregators buy into a model that fails to 
represent the sources' data signals directly. Because DwC lacks the syntactic conventions needed 
to absorb and align conflicting taxonomic hierarchies, the choice to favor DwC- over TCS-based 
solutions becomes a systemic weakness of the aggregation design. 
   Problems with relying just on DwC syntax are further amplified by widespread implementation 
practices. For instance, while DwC permits the use of taxonomic concept labels at the species 
level, the standard does not forbid leaving the "DwC: nameAccordingTo" category empty. 
Because enforcing such labels is optional in DwC, doing so now becomes a social responsibility. 
In practice, the most occurrence records that participate in global aggregation are syntactically 
under-specified at the species level. GBIF itself does not source species-level names to 
individual, expert-authored publications (GBIF Secretariat 2016). 
   Conversely, DwC does not require filling in higher-level taxonomic names (genus, etc.) for 
occurrence records. Yet in this case the option to do so should be ignored, because above the 
species-level DwC syntax does not permit using taxonomic concept labels at all. Hence the 
DwC-permissible higher-level name usages are necessarily under-specified. In either case, these 
higher-level names need not travel along with every occurrence record. The species-level 
taxonomic concept label is sufficient to indicate the record's identity with provenance from an 
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expert-authored taxonomy. A full representation of that source's taxonomic signal, and of its 
conflicts with other published signals, should live outside of the occurrence record. 
   In summary, the basic design preference for DwC over TCS and the way in which the former is 
typically implemented, are choices that compromise the taxonomic coherence of biodiversity 
data packages being processed for aggregation. 
 

Aggregation and Authorship 
 
   Some aggregators may disagree that systematic syntheses are novel theories, or challenge the 
significance that we ascribe to their creation under common and pragmatic conventions. Several 
recent (self-)assessments of aggregators do not focus on the issue of backbones as an important 
challenge they must own and overcome (e.g. Parr et al. 2011; Belbin et al. 2013; Faith et al. 
2013; Gaiji et al. 2013; Sikes et al. 2016). Instead, we find the following position symptomatic 
(Belbin et al. 2013: 73; italics added for emphasis): "Agencies such as the ALA and GBIF enable 
observations to be recorded directly to their systems. These records are reviewed before being 
'published', but the ALA and GBIF are not the data provider and therefore cannot assume 
responsibility for these records." 
   In contrast, we argue that by promoting backbones, aggregators act not just as data access 
faciltators but as data identity authors. GBIF in effect prohibits representation of occurrence 
records under taxonomic views that either conflict with the endorsed view, reflect a more 
granular view, or which are not yet recognized in the synthesis. It is not equitable to suggest that 
these issues should be dealt with "at the source", or that "data errors are best addressed through 
collaboration between all relevant agencies" (Belbin et al. 2013: 73). 
   Furthermore, aggregators frequently publish their syntheses under conventions that obscure 
individual expert authorship. This is not an all-or-nothing phenomenon; often there are linkages 
to individually authors or authored-attributed sources at lower-level nodes of the synthesis. Yet 
for instance, the 50+ sources for the GBIF taxonomy are all cited as initiatives, i.e., 
institutionalized catalogues, checklists, databases, species files projects, etc. No individual 
authors are named 'on the surface'. The entire synthesis is published by the "GBIF Secretariat" 
(2016). The Open Tree of Life project (Hinchliff et al. 2015; McTavish et al. 2015; Redelings 
and Holder 2016), which is groundbreaking in its ability to accommodate individual source 
publications, nevertheless publishes its periodical synthesis versions without naming individual 
authors. The World Register of Marine Species lists ca. 260 taxonomic editors, making an effort 
to accredit views to editors and primary publications at lower levels. That said, the "WoRMS 
Editorial Board" (2017) publishes the entire synthesis. 
   Publication conventions that obscure individual expert authorship of novel syntheses can 
impact trust. Such conventions are made feasible in part by the use of data standards – e.g. 
Darwin Core – that allow creating and publishing large, web-only syntheses from myriads of 
individual, traditionally accredited publications. Unlike just three decades ago, aggregators now 
have technical means to appropriate and synthesize thousands of expert-authored monographic, 
revisionary, and phylogenetic publications into novel syntheses that on the surface accredit only 
an initiative or committee. However, the social costs of creating syntheses with obscured author 
accreditation can be considerable. To expert authors, this may signal not only that some low-
level form of intellectual appropriation is taking place (Wägele et al. 2011), but more 
disruptively, that accountability standards for the process of generating new systematic theories 
are shifting. For any particular taxonomic group, the synthesis may well represent the majority 
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view. But who is responsible for defending that view scientifically? Who can be engaged to 
receive credit, and also criticism, for creating the synthesis as a unique hypothesis of how the 
natural world is structured? 
   Historically, the field of systematics has provided built-in opportunities for individual authors 
to reaffirm, expand, or challenge existing classifications through persistent publication venues. If 
aggregators publish syntheses that are not just novel but authorless in the conventional sense, 
they are thereby redesigning both the content of systematic theories and the social mechanisms 
for assigning responsibility for such content. Particularly the latter action constitutes a change in 
the power structure between aggregators and individual experts, to the experts' detriment.  
 

Consequences of Disenfranchising Taxonomic Experts 
 
   Taxonomic perspectives that conflict with an aggregator's synthesis have no equitable way to 
compete in the same environment. Consider, for instance, the effect of this single-party system 
on the aggregators' relationships with (e.g.) early-career systematists. Many systematists will 
find their path into the field because of the following circumstances: they have a passion for 
understanding biodiversity and have likely had a formative experience that existing systematic 
hypotheses for a particular lineage are empirically inadequate. Not accepting the consensus is an 
important motivator for systematic careers. The mission to revise challenging groups solidifies 
the intellectual identity of systematists, who must become professional consensus disruptors to 
make their mark in science. 
   Systematic challenges that persist today are typically not trivial. Resolving them requires 
narrow specialization; hence the term "expert" is appropriate to identify an individual's record of 
training and accomplishment. The research products of early-career systematists, including 
monographic or revisionary treatments generated to meet thesis requirements, are usually 
published in international, peer-reviewed journals. Traditionally, this is how novel, high-quality 
hierarchies become part of the systematic knowledge base while advancing systematists' career 
trajectories. 
   It should be unproblematic for a graduate student's published monograph, including the therein 
newly identified occurrence records, to immediately be integrated with global aggregator 
environments – even and especially if the new classification conflicts with the aggregator's 
synthesis, as it almost invariably will. Technical and social barriers to adding these data as 
published have a strong antagonistic effect. Evidently the monograph was good enough to earn a 
doctoral degree and peer-reviewed publication – key accolades for reaching the next professional 
levels – but somehow, interfacing with the aggregator environment requires another level of 
validation that appears unattainable. 
   The example of the monograph of Zelus Fabricius, 1803 sec. Zhang et al. (2016) illustrates 
how the current power structure can operate. This publication accommodates 71 species-level 
concepts, including 24 new species names and numerous other taxonomic and nomenclatural 
changes. The monograph also identifies 10,628 specimen records. These can be downloaded in 
DwC-compatible format from the article website of the Biodiversity Data Journal (see also 
Smith et al. 2013). The example is fair precisely because the occurrence records were shared 
openly at the time of publication and in accordance with conventions that the aggregator 
endorses (GBIF 2017). This is not a case of erroneous execution. 
   Zhang et al. (2016) was published in early July, 2016. Later that month, the records were 
aggregated in GBIF as well. However, the aggregation process newly constrained the original set 
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of occurrence records in at least two critical ways. First, the aggregator (GBIF 2017) shows only 
409 of the source records (3.8%), i.e., those cited in the publication's main text. This constraint 
was applied by the journal publisher. Second, for the duration of nearly 220 days – i.e., until the 
next GBIF Backbone update took place (GBIF Developer Blog 2017) – the aggregator validated 
only 17 of 78 taxonomic names (21.8%), leaving 61 species-level epithets unrecognized. Among 
other consequences, this meant that the epithets of 40 holotype specimens referenced in Zhang et 
al. (2016) were changed to show only the genus-level name "Zelus Fabricius, 1802" in the GBIF 
aggregate. 
   The GBIF Backbone is not open for direct edits by expert authors who would validate the 
respective epithets sec. Zhang et al. (2016). Directly submitting (e.g.) a Darwin Core Archive 
data file (GBIF 2010) is also not an option for individual authors. Experts can only submit 
"issues" for tracking through the ChecklistBank code repository (Döring et al. 2017), with the 
expectation that someone with high-level access rights will address them (Mesibov 2013). 
   It is clearly positive that within seven months, the GBIF records' identifications were adjusted 
to reflect Zhang et al. (2016). At the same time, neither that event nor the entire process can be 
said to have empowered the authors of the monograph. The vibe that experts get from an 
aggregator is more like this: we choose if we want to represent your knowledge, and when. One 
might even say: if an aggregator wanted to 'hit' early-career systematists where it hurts their 
academic identities the most, controlling the form and content of their thesis-derived occurrence 
record identifications and systematic hypotheses is unfortunately quite effective. In analogy to 
the effect of negative on-line reviews for contractors, the experience of feeling disenfranchised 
will endure long after the records are adjusted. 
 

Backbone-Based Data Signal Distortion: An Example 
 
   The insect monograph of Zhang et al. (2016) may come to enjoy community-wide acceptance 
for many years to come, effectively replacing all predecessors. Yet the classifications of other 
organismal groups are revised more frequently, with the outcome that multiple incongruent 
systems remain in use simultaneously (e.g. Peterson & Navarro-Sigüenza 1999; Lepage et al. 
2014; Franz et al. 2016a, 2016b, 2016c). In some instances, the parallel existence of regional 
biodiversity data cultures that endorse conflicting taxonomies reflects an equilibrium condition 
(cf. Lepage et al. 2014). Persistent conflict is also common in phylogenomics, where competing 
tree hypotheses can appear in short order and continue to attract endorsements by third-party 
researchers (Brown et al. 2017). 
   Taxonomic backbones are deeply problematic in such situations. Our 'mostly real' example of 
Fig. 1 shows how a backbone may distort the identities of occurrence records qua aggregation, 
and thereby support inferences that conflict with every source-derived data signal. The example 
is a simplification of figures 1 and 2 in Franz et al. (2016a), showing only 20 occurrences that 
originate from the Southeast Regional Network of Expertise and Collections herbarium portal 
(SERNEC Data Portal 2017). These were deliberately filtered to illustrate the effect. 
   The starting conditions are common enough. A group of endangered orchids is subject to 
multiple taxonomic revisions – reviewed in Weakley (2015) – over a relatively short time 
interval. The revisions have led to a complex matrix of name usage relationships between 
different sources, with incongruent perspectives regarding species-level concept granularity and 
genus-level concept assignment. In spite of this, all expert-promoted views (A–C in Fig. 1) 
concur internally that two of the four ecoregions herein identified – i.e., R1 and R4 – do not 
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harbor individuals from multiple recognized species in the group. Furthermore, no expert author 
has ever recognized the presence of an entity with the epithet bifaria in the ecoregion R2. That 
said, and depending on the taxonomies being aligned, the names bifaria and divaricata have 
varying, pro parte synonymy relationships. 
  Backbone-based aggregation fails to preserve the expert-sourced taxonomic coherence of the 20 
occurrence records in our example (D and E in Fig. 1). The data-transforming process yields 
novel biological inferences with no support from any input source; viz. R1 and R4 are regions of 
sympatry for the orchid group, whereas region R2 harbors an entity labeled bifaria yet not 
divaricata. In other words, the interaction of taxonomic pluralism at the source level with 
backbone-based aggregation can create type I or type II errors in distributional signals (i.e., false 
positives or negatives) for which only aggregators may claim responsibility. Given the power 
balance inherent in the aggregation design, such errors need not be frequent to have a chilling 
effect on biologists' trust. 
 

CONCLUSIONS 
 
   Our diagnosis implies a clear set of recommendations for moving forward. A first step is to 
recognize that trust is not just a feature of data signal quality but also a consequence of the social 
design of aggregation and the resulting power balance between data contributors and 
aggregators. This insight should not count as a justification for contributors to withhold 
occurrence records (cf. Ferro and Flick 2015; Sikes et al. 2016). However, not trusting an out-of-
balance social design does make sense in light of well-established thinking about cooperative 
knowledge systems (Carrier 2010; Fricker 2007; Sperber et al. 2010; Winsberg et al. 2015; 
Wagenknecht 2016; Fellows 2017). Aggregators are well advised to accept an inclusive notion of 
trust that gives weight to equitable social engineering. 
   A second step is to acknowledge the accountability gap created by downplaying the impact of 
taxonomic backbones. Providing a clearinghouse for occurrence records is not simply a matter of 
cleaning up records provided by source collections. Instead, one needs a way to collate those 
records into meaningful biological datasets for swathes of life where no universal, consensus 
hierarchy exists. The practical need for such a hierarchy does not erase its scientific status as a 
classification theory (Leonelli 2013). 
   We suggest that aggregators must either author these classification theories in the same ways 
that experts author systematic monographs, or stop generating and imposing them onto incoming 
data sources. The former strategy is likely more viable in the short term, but the latter is the best 
long-term model for accrediting individual expert contributions. Instead of creating hierarchies 
they would rather not 'own' anyway, aggregators would merely provide services and incentives 
for ingesting, citing, and aligning expert-sourced taxonomies (Franz et al. 2016a). 
   As a social model, the notion of backbones (Bisby 2000) was misguided from the beginning. 
They disenfranchise systematists who are by necessity consensus-breakers, and distort the 
coherence of biodiversity data packages that reflect regionally endorsed taxonomic views. 
Henceforth, backbone-based designs should be regarded as an impediment to trustworthy 
aggregation, to be replaced as quickly and comprehensively as possible. We realize that just 
saying this will not make backbones disappear. However, accepting this conclusion counts as a 
step towards regaining accountability. 
   A third step is to refrain from defending backbones as the only pragmatic option for 
aggregators (Franz 2016). The default argument points to the vast scale of global aggregation 
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while suggesting that only backbones can operate at that scale now. The argument appears valid 
on the surface, i.e., the scale is immense and resources are limited. Yet using scale as an obstacle 
it is only effective if experts were immediately (and unreasonably) demanding a fully functional, 
all data-encompassing alternative. If on the other hand experts are looking for token actions 
towards changing the social model, then an aggregator's pursuit of smaller-scale solutions is 
more important than succeeding with the 'moonshot'. And clearly, such solutions have been 
developed, often under the term "taxonomic concept approach" (e.g. Berendsohn 1995; Kennedy 
et al. 2006; Franz et al. 2008). Avibase (Lepage et al. 2014) uses this approach to manage more 
than 1.5 million taxonomic concept labels from 150+ checklists published over 125 years. This 
scale, covering some 10,000 avian species-level concepts as currently recognized by distinct 
sources, was achieved largely through an exceptional single-person effort. Aggregators seeking 
to improve expert trust are therefore better advised to embrace such design alternatives now 
rather than focus too much on global scalability as part of an invalid all-or-nothing argument. 
Otherwise, what is sold as pragmatism begins to sound dogmatic. In the presence of successful 
medium-sized solutions, the unwillingness to adjust designs – even for pilot projects – will likely 
be viewed by the expert community as a strategy to double down on the current power structure. 
   Another seemingly pragmatic argument is that many data packages to be aggregated are 
themselves syntactically underspecified. Again, while true on the surface, this does not preclude 
the design of pilot systems that enforce TCS- over DwC-based syntax – at a scale commensurate 
with individual expert publications (e.g. Senderov and Penev 2016). Failures to propagate such 
innovations at greater scales, and continued preferences for Darwin Core for purposes beyond its 
design scope, send the wrong message to experts. 
   Which brings us to the final conclusions. We intended to diagnose a systemic impediment to 
trusting biodiversity data aggregation. Whenever we mentioned specific aggregators, our purpose 
was not to engage in name-calling but to exemplify a broader design paradigm. While we cannot 
claim to have a full-scale solution on hand, the key directive is to develop new technical 
pathways and social incentives for experts to contribute directly to the validation of 
taxonomically coherent data packages in a greater aggregate. This will require new, broad-based 
political will in order to ensure its priority of the agendas of aggregators.  
   Over the past several decades, biodiversity data aggregation has taken a turn away from the 
agenda of promoting the careers of individual systematists. While recognizing the reasons 
aggregators had for taking this path, we suggest that the price of doing so, translated into 
declining trust, is higher than aggregators may have expected. The price is likely also higher than 
aggregators can afford in order to maintain long-term viability in the biodiversity data 'economy'. 
   We view this diagnosis as a call to action for both the systematics and the aggregator 
communities to reengage with each other. For instance, the leadership constellation and 
informatics research agenda of entities such as GBIF or Biodiversity Information Standards 
(TDWG 2017) should strongly coincide with the mission to promote early-stage systematist 
careers. That this is not the case now is unfortunate for aggregators, who are thereby losing 
credibility. It is also a failure of the systematics community to advocate effectively for its role in 
the biodiversity informatics domain. Shifting the power balance back to experts is therefore a 
shared interest. 
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FIGURE CAPTIONS 
 
FIGURE 1. Backbone-based aggregation disrupts coherent biodiversity data packages. 'Most real' 
example adopted from Franz et al. (2016a). The top right table presents an alignment of five 
different taxonomies for the Cleistes/Cleistesiopsis complex sec. Radford et al. (1968), Fernald 
(1950), USDA Plants (2012), Kartesz (2010), and Weakley (2015). Columns indicate the relative 
congruence between different taxonomic concepts, whereas rows show the period of usage, 
validly recognized names, and sources. A–E: five representations of the same set of 20 
specimens provided by the SERNEC Data Portal (2017), with distribution maps that identify four 
ecoregions R1–R4 (right), and tables displaying the ecoregion-specific presence (+), absence (–), 
or inapplicability (o – i.e., name not available) of occurrences identified to taxonomic concept 
labels. A–C: concept occurrence patterns according three reciprocally incongruent, yet internally 
coherent taxonomies; D: raw (unprocessed) aggregate of A–C, where each source contributes a 
complementary subset (data package) of the 20 specimens – hence six taxonomic names are 
shown; E: backbone-based transformation of D. Both D and E support new biological inferences 
(red circles) regarding the sympatry of multiple entities of the complex in ecoregions R1 and R4 
(= false positives), and the local endemism of an entity labeled bifaria in R2 (= false negative), 
which is possible if pro parte synonymy relationships are not coherently transposed in the 
backbone-based synthesis. 
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