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Abstract
Ground beetles (Carabidae) are recognized for their diverse, chemically-mediated defensive behaviors. Produced using a pair of
pygidial glands, over 250 chemical constituents have been characterized across the family thus far, many of which are considered
allomones. Over the past century, our knowledge of Carabidae exocrine chemistry has increased substantially, yet the role of
these defensive compounds in mediating behavior other than repelling predators is largely unknown. It is also unclear whether
non-defensive compounds produced by ground beetles mediate conspecific and heterospecific interactions, such as sex-
aggregation pheromones or kairomones, respectively. Here we review the current state of non-exocrine Carabidae
semiochemistry and behavioral research, discuss the importance of semiochemical research including but not limited to
allomones, and describe next-generation methods for elucidating the underlying genetics and evolution of chemically-
mediated behavior.
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Introduction

Ground beetles (Carabidae) have long captured the attention
of evolutionary biologists and chemical ecologists due to their
great diversity and array of chemical defensive strategies
(Darwin 1846; Eisner 1958). Since Thomas Eisner’s
pioneering studies on bombardier beetles, knowledge of cara-
bid defensive chemistry has grown tremendously, with over
250 distinct chemical classes currently described (Lečić et al.
2014). Despite the importance of non-allomonic semiochem-
icals in mediating interactions between and within species,
studies on behaviorally-active compounds for any of the over
40,000 species of carabid remain absent (Arndt et al. 2005).
Given that many of these compounds are important, if not
crucial, to regulating behavior in insects (e.g. sex-
aggregation pheromones), understanding their biosynthesis
and diversity could provide new insights into the evolution
of one of the animal kingdom’s most biodiverse families.
We review the current state of non-allomonic semiochemistry

and behavioral research in Carabidae and discuss new
methods for studying the underlying genetics and evolution
of biosynthetic pathways responsible for synthesis of these
semiochemicals.

Carabidae Semiochemistry

Pygidial Gland Form and Function Pygidial glands are located
posterodorsally within the abdomens of all adephagans, which
include Carabidae (Beutel and Haas 1996; Dettner 1985;
Forsyth 1968, 1970, 1972). Each independent glandular sys-
tem is composed of one set of multi-lobed secretory glands,
which are connected to reservoir-pump chambers via long
collecting ducts (Forsyth 1972; Di Giglio et al. 2011).
Defensive chemicals are thought to be synthesized in the
multi-lobed secretory glands, which funnel into the collecting
duct, and ultimately collect in the reservoir chambers
(Attygalle et al. 2006; Will et al. 2000). When a beetle is
attacked, the pygidial glands are discharged by oozing the
contents out of the tip of the abdomen, deterring the threat
(Eisner et al. 1976, 2006). Within the Brachininae and
Paussinae, however, an additional gross anatomical structure
allows for the aiming and spraying of allomones at a target
with great accuracy (Eisner and Aneshansley 1999). In these
taxa, colloquially known as bombardier beetles, a highly-
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sclerotized, conical reaction chamber attaches to the posterior
end of the reservoir and opens to the abdominal tip (Di Giulio
et al. 2015; Eisner et al. 2000). Situated within the reaction
chamber is a one-way valve that physically separates the con-
tents of the reservoir chamber from the inside of the reaction
chamber (Arndt et al. 2015). Accessory glands associatedwith
the reaction chamber are thought to synthesize oxidative en-
zymes. When the valve is opened, hydroquinones and hydro-
gen peroxide rush into the reaction chamber, the hydroqui-
nones are ultimately oxidized to p-benzoquinones, and the
pressure build up ejects the mixture of newly oxidized qui-
nones out of the abdomen at temperatures of up to 100 °C at a
rate of 341 to nearly 1000 pulses per second (Fig. 1)
(Aneshansley et al. 1969; Arndt et al. 2015; Dean et al.
1990; Eisner et al. 1977). This mode of defense is considered
apomorphic in these two clades with respect to the general
strategy of oozing or light spraying found in most carabids
(Di Giglio et al. 2011).

Defensive Chemical Diversity Carabidae defensive com-
pounds span 19 chemical classes and over 250 individual
compounds, ranging from the simplest carboxylic acids to
comparatively complex benzoquinones and monoterpenes
(Table 1) (Lečić et al. 2014). Carabids have been shown to
produce saturated and unsaturated carboxylic acids, most no-
tably formic, acetic, methacrylic, and tiglic acids (Attygalle
et al. 1991a; Blum et al. 1981; Dettner 1987; Eisner et al.
1977; Francke and Dettner 2005; Lečić et al. 2014; Moore
and Wallbank 1968; Schildknecht et al. 1968a, b; Will et al.
2000). The presence of these acids appears to be sexually
dimorphic in some species, with female beetles producing
the unsaturated compounds while males produce the fully
saturated form (Attygalle et al. 1991a). This is the only case
of sexual dimorphism in Carabidae pygidial gland constitu-
ents that we are aware. It is possible, albeit untested, that
sexual dimorphism in pygidial compounds could play a role
in mediating behavior. Formic acid is generally accompanied
by the co-occurrence of unbranched hydrocarbons in the py-
gidial glands as well, as is the case for Formicine ants where
they are potentially used as a surfactant to enhance the effect
of their formic acid defensive sprays (Will et al. 2000). Some
subfamilies produce salicylaldehyde and other phenolic deriv-
atives, though this is seemingly less common than the produc-
tion of organic acids (Holliday et al. 2012; McCullough
1966). There have also been some reports of esters, aldehydes,
ketones, terpenes, hydrogen cyanide, and others in certain taxa
(Table 1) (Attygalle et al. 2009; Blum et al. 1981; Kanehisa
and Murase 1977; Kanehisa and Kawazu 1985; Moore and
Wallbank 1968; Schildknecht et al. 1964, 1968a, b). One
chemical class that is of particular interest are the hydroqui-
nones and their oxidized benzoquinone counterparts (Table 1).
While quinones are present in four Carabidae subfamilies,
Brachininae and Paussinae have evolved a unique way of
utilizing them via rapid oxidation of hydroquinones to
benzoquinones in a sclerotized reaction chamber (Fig. 1)
(Balestrazzi et al. 1985; Schildknecht 1970; Schildknecht
et al. 1968a, b).

In all cases so far mentioned, these chemicals represent those
found in the adult development stage. Only two studies have
examined glandular secretions of larval and pupal stages. When
examining the larvae of Chlaenius cordicollis, Holliday et al.
2015 discovered that a gland which extruded in response to
physical duress produced nine compounds, only one of which
was found in the adult stage (2-methoxy-4-methylphenol). Six
of these compounds, all quinones and phenolics, were sug-
gested to be related to their adult counterparts by being their
more oxidized versions, suggesting common biosynthetic path-
ways minus terminal reduction steps. 2-methoxy-4-ethylphenol
was not suggested to be a precursor of any adult compounds by
simple redox steps (Holliday et al. 2015). Di Giglio et al. 2009
discovered an enormous diversity of compounds in a single
carabid species while examining the exocrine glands of

Reaction 
chamber

Reservoir 
chamber

Secretory
glands

Accessory 
glands

H2O

O2

O

O

R

OH

OH

R

OO

H

H

ΔH
Enzymes

hydrogen 
peroxide

hydroquinones

energy (as heat)

molecular oxygen

water benzoquinones

Fig. 1 A diagram showing a pygidial gland reservoir and reaction
chamber of a bombardier beetle, adapted from (James et al. 2012). The
pygidial gland reservoir contains a mixture of hydrogen peroxide and
hydroquinones, which upon reservoir contraction are ejected into a scler-
otized reaction chamber through a one-way valve. In the reaction cham-
ber are enzymes produced by accessory glands which catalyze the deg-
radation of hydrogen peroxide and convert hydroquinones to
benzoquinones. The enthalpy of this process is great enough to cause a
pressure gradient which expels the benzoquinones out of the abdomen at
temperatures reaching up to 100 °C
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Carabus lefebvrei pupae. In their glandular secretions, p-benzo-
quinone, two organic acids, numerous terpenes, aldehydes, and
other compounds were detected; thirty-one compounds in total,
two of which were isomers of β-ocimene (Di Giglio et al.
2009). Although these are only two studies, they exemplify

how diverse carabid defensive metabolomes can be not only
across taxa, but within taxa across developmental stages. It is
possible that some of these compounds play roles in mediating
behavior between members of the same species, especially
within aggregations (Fig. 2).

Table 1 A table demonstrating common pygidial gland chemical classes produced by six major Carabidae subfamilies. Chemical structures are also
presented for each compound in order of their listing
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Additional Information:

1. Compounds shown for each subfamily do not represent an exhaustive list of compounds produced. Those represented here are amongst the most
abundant or are biochemically unique within Carabidae

2. BR^, BR1^, and BR2^ represent any functional group of a given length. Given the diversity of carabid compounds, the pygidial gland constituents can
be best represented in terms of chemical classes

3. An R-group intersecting a bond within a ring indicates that the R-group may bind to multiple different carbons (i.e. there is more than one compound
with that general structure)
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Non-exocrine Semiochemistry Very few studies have exam-
ined carabid semiochemistry outside of the context of exo-
crine gland secretions. There are currently two accessible
studies which examine cuticular chemistry, and there is only
one that examines volatile emission from the entire beetle
without exocrine gland emphasis. Bonacci et al. 2008 exam-
ined the cuticular chemistry of three carabid species: apose-
matic Brachinus sclopeta and Anchomenus dorsalis, as well
as non-aposematic Poecilus cupreus, all of which can be
found together in aggregations. It had been observed that
A. dorsalis would exhibit a rubbing behavior toward
B. sclopeta, which was initially suggested to be chemically-
mediated and served as an odor-sharing mechanism
(Brandmayr et al. 2006). A. dorsalis individuals were even
observed to rub strips of paper that had been presented in
monospecific B. sclopeta colonies, but not the control strips
themselves. However, isolated individuals of A. dorsalis and
B. sclopeta had very similar cuticular compound profiles com-
pared to the non-aposematic co-aggregator, Poecilus cupreus.
This suggested that most of the similarity seen was innate and
due to the evolution of a Müllerian mimicry complex rather
than odor sharing within an aggregation (Bonacci et al. 2008).
However, it could be that the similarity in cuticular hydrocar-
bon profiles was acquired prior to individuals being separated
for species-specific testing.

To investigate if cuticle chemistry is diet-dependent, Talarico
et al. 2009 examined SPME extracts from a myrmecophilous
beetle species, Siagona europaea, as well as one of their prima-
ry food sources, Tapinoma nigerrimum. It was discovered that
beetles that had been fed ants resembled the cuticular chemical
make-up of the ants more than unfed and isolated beetles. Fed
beetles had acquired through some means an additional ten
compounds compared to the fourteen found in unfed beetles,

all of which were also present in the ant prey. Most of these
compounds were aliphatic ketones, alkanes, and unsaturated
hydrocarbons, as well as iridomyrmecin and isopulegol, al-
though many remained unidentified. The same general trend
was observed in beetles that preyed upon Messor capitatus;
when fed this ant species, the beetles acquired a total of sixteen
compounds, doubling the eight that they hadwhen isolated from
ants. All identified compounds were alkanes, unsaturated hy-
drocarbons, as well as one ester. How these compounds are
transferred from ant to beetle is currently unknown, although
it is likely that they are acquired through physical contact rather
than sequestration. (Talarico et al. 2009).

In contrast to the aforementioned non-volatile compounds
characterized, Bonacci et al. 2011 was the first to examine the
dynamic headspace volatiles released by carabid beetles, both
placid and disturbed. In their analyses, they discovered that while
each group produced only undecane, heneicosane, Z-9-tricosene,
and tricosene, the disturbed beetles produced more of each com-
pound, although only undecane was produced at a quantity that
was found to be statistically significant (Bonacci et al. 2011).

Potential Implications of Carabidae
Pheromone & Kairomone Studies

Allomones as Alarm Pheromones Carabid beetles produce
an extraordinary diversity of exocrine compounds, many
of which have been described as allomones (Moore and
Wallbank 1968; Schildknecht et al. 1968a, b; Will et al.
2000). While the efficiency of these sprays on predator
deterrence has been assessed, the behavioral effects on
the emitter and conspecifics have yet to be explored
(Eisner et al. 2006; Eisner and Dean 1976), (Fig. 2). It
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Fig. 2 Hypothetical depiction of chemically-mediated tritrophic
interactions between carabid beetles, a wolf spider, and a parasitoid. (a)
Carabid spraying the wolf spider, a predator, with its pygidial gland
allomones; (b) Pygidial gland allomones acting as alarm pheromones

for conspecifics; (c) A carabid beetle releasing an aggregation
pheromone, which is detected by a conspecific at the other side of the
rock; (d) A parasitoid wasp eavesdropping on volatile cues (kairomones)
released by aggregating carabid beetles
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has been demonstrated in other insect orders that volatiles
released from sprays, stings, and other defensive behav-
iors can elicit alarm behavior in conspecifics, and this
may hold true for carabids. The dual use of allomones
as alarm pheromones is considered parsimonious
semiochemistry (Blum 1996). That is, it is suggested to
be more parsimonious to use an honest signal of danger,
an allomone, as an alarm pheromone than it is to have two
separate compounds or blends of compounds for defense
and alarm respectively. While this phenomenon of semio-
chemical bifunctionality is most often discussed in the
context of eusocial insects, it has been also described in
a number of solitary and gregarious species as well (Blum
1969, 1996; Cheng et al. 2017; Farine et al. 2002;
Gunawardena and Bandumathie 1993; Lockwood and
Story 1987; Löfqvist 1976; Machado et al. 2002; Wilson
and Regnier 1971). Conspecific receivers of an alarm
pheromone signal display one of two behavioral re-
sponses: (Alatalo and Mappes 1996) an increase in ag-
gressive behavior toward the source of the threat, or
(Albre et al. 2012) dispersal away from the source of
the threat. These have been classically referred to as ag-
gressive alarms and panic alarms, respectively (Wilson
and Regnier 1971). In eusocial insects, the behavioral re-
sponse may be caste specific, such as with the termite
Nasutitermes exitiosus. Defensive sprays of N. exitiosus
soldiers have been shown to recruit other soldiers to the
emitter, while workers avoid the emission source if pos-
sible (Costa-Leonardo and Haifig 2010; Eisner et al.
1976). In the social wasp Vespula velutina, three aliphatic
ketones released from the venom gland elicit an aggres-
sive, stinging response in conspecifics (Cheng et al.
2017). In non-eusocial insects, such as the cockroach
Therea petiveriana and the stink bug Nezara viridula,
the seemingly universal response to these bifunctional
defensive-alarm pheromones is dispersal (Farine et al.
2002; Lockwood and Story 1987). There is no document-
ed behavior that we could find in the literature suggesting
that non-social insects will risk predation to deter a threat
when they themselves or their kin are not actively being
attacked. That is, non-social insects are unlikely to risk
predation to defend an unrelated conspecific. Thus, euso-
cial insects tend to respond to defensive-alarm phero-
mones as Bunselfish swarms^, their specific behavior be-
ing taxa, caste, and context dependent, while non-social
insects behave as selfish herds (Hamilton 1971; Young
et al. 1994). This is to be expected, given that these eu-
social insects have the genetic incentive as haplodiploids
to protect their reproductive caste, even at the risk of
being preyed upon or having their siblings preyed upon.
Solitary insects generally have no such incentive, and thus dis-
perse to retain the opportunity for reproduction or protect their
kin (Hamilton 1964a, b, 1972; Trivers and Hare 1976).

Carabids offer an interesting opportunity to explore the role
of defensive chemicals as alarm pheromones in a variety of
ecological contexts (Fig. 2). While no carabid beetles are eu-
social insects, certain taxa have been found to aggregate with
conspecifics and, in some cases, heterospecifics under sub-
strate (Bonacci et al. 2008; Philip and Burgess 2012;
Thomas et al. 2001). Thus, carabids offer the unique opportu-
nity to observe not only the response to defensive chemicals in
solitary or gregarious species, but also between two to three
different, co-aggregating species (Bonacci et al. 2008). This is
especially true for the flanged bombardier beetles of the sub-
family Paussinae, which are obligate or facultative myrmeco-
philes (Geiselhardt et al. 2007; Moore et al. 2011; Robertson
and Moore 2016). It is currently unknown what behavioral
effects their defensive blast of benzoquinones may have on
their ant hosts, or what response formic acid or sting volatiles
may elicit in the beetles. The behavioral effects that the defen-
sive secretions of larvae and pupae may have on conspecifics
is similarly a mystery.

Kairomone-Mediated Parasitism Kairomones also play a sig-
nificant role in mediating behaviors between insects, particu-
larly between hosts, parasites, and parasitoids (Brown et al.
1970). Although parasitism on carabids by other organisms is
not a topic that has been investigated in great detail, there are
reports of wasp, mite, and nematode parasitism occurring in
this group (Andersen and Skorping 1990; Fain et al. 2009;
Sasakawa et al. 2011). Most interactions between parasites/
parasitoids and their hosts are chemically mediated to some
extent, the parasitic taxa orienting to chemical cues released
by the host either directly or indirectly. For example, Cotesia
marginiventris (Braconidae) utilize herbivore-induced plant
volatiles to find the general location of their Spodoptera
frugiperda hosts. Once on the plant, the wasp will then use
chemical signatures left by the caterpillars on the leaf to locate
their host and parasitize them (Wölfling and Rostás 2009).
Other parasitoids and parasites, such as the wasp Aphytis
melinus and the nematode Caenorhabditis japonica, are
attracted solely or primarily by volatile organic compounds
released by the host itself rather than host-associated environ-
mental signals (Okumura and Yoshiga 2014; Stelicht 1973).
We know nothing, however, about the extent to which chem-
ical eavesdropping on adult and immature carabid beetles by
parasitoids and parasites may influence parasitic behavior
(Fig. 2). One can only speculate on the diversity of parasites
and parasitoids that afflict this hyper-diverse lineage, especial-
ly given that most preferentially infect one to a few species
and may specialize on specific life stages (Althoff 2003;
Brodeur 2000; Strand and Obrycki 1996).

Some carabid taxa are also reported as being
ectoparasitoids on other organisms. Studies on North
American Brachinus have shown that the larvae of some taxa
are parasitoids of aquatic beetle pupae, notably within the
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families Hydrophilidae, Gyrinidae, and Dytiscidae (Erwin
1967; Juliano 1984; Saska and Honek 2004). Since these pu-
pae are nested within moist soil or under rocks obscuring them
from view, there may be a chemical cue being released by the
aquatic beetle pupae that is allowing the first-instar larvae or
adult females to locate a host. Chemical eavesdropping on
subterranean insects by surface-dwelling parasitoids has, to
our knowledge, not been investigated before in insects. An
investigation into the mechanisms regulating host-finding by
Brachinus larvae could provide new insights into how para-
sitoids locate visibly hidden hosts against the noisy chemical
background of the soil and the inhabitants therein.

Brachinus are not the only bombardier beetles to parasitize
another species. Members of the subfamily Paussinae have
obligate associations with ants and will prey upon them from
within the colony (Moore et al. 2011; Robertson and Moore
2016). Their larvae employ this same predation tactic, neither
seeming to evoke any usual aggressive response from their
hosts (Geiselhardt et al. 2007). This is unusual behavior for
ants to exhibit, a lack of aggressive response to a non-nest
mate—even within a species, non-nest mates with the
Bincorrect^ cuticular chemical profile are expelled or killed
by worker or soldier castes (di Mauro et al. 2015; Emery
and Tsutsui 2013; Martin et al. 2008; Sturgis and Gordon
2012). The ability of Paussine parasites to enter the colony
and kill workers without evoking the colony’s aggression has
been explained partially by their potential ability to mimic ant
stridulations (Di Giulio et al. 2014). There is likely a chemical
component to the mediation of this behavior, although no
specific compounds have been isolated either from the beetle
cuticle or glandular exudates from which ants feed
(Geiselhardt et al. 2007). That in itself, the beetles providing
a food source for the ants, could be enough to explain their
protected status within the colony. Potentially, the beetles ac-
quire cuticular compounds from constant contact with ants, or
from consuming them, which would allow them to chemically
blend in with their hosts (Elgar and Allan 2004; Johnson et al.
2001; Vander Meer and Wojcik 1982). They may also synthe-
size them independent of their hosts via convergence on a
suite of biochemical pathways for producing cuticular constit-
uents (Allan et al. 2002; Espelie and Hermann 1988;
Geiselhardt et al. 2006). In some cases, myrmecophilous in-
sects have been shown to release compounds that placate their
ant hosts rather than attempting to blend in (Mori et al. 2000a,
b; Visicchio et al. 1999). However, this is generally a short-
lived behavioral modification that would not well-explain the
beetles’ ability to remain in the nest for prolonged periods. It is
also possible that they only possess a select few cuticular
compounds that may be unimportant for nest mate recogni-
tion, essentially making themselves undetectable (Kleeberg
et al. 2017). Other carabid taxa, such as larvae within the tribe
Peleciini, are suggested to be ectoparasitoids of juvenile mil-
lipedes and Chrysomelid pupae (Erwin 1979; Salt 1928). The

genus Lebistina are also parasitioids of Chrysomelid pupae,
and are interestingly used by members of the San tribe of
Africa to poison-tip arrows (Weber et al. 2008). While it is
true that most carabid larvae are free living scavengers, the
ectoparasitic taxa mentioned here could serve as interesting
focal species for research into chemically-mediated parasite-
host interactions.

Enhanced Understanding of Pheromone Diversity and
Carabid Evolution Animals communicate through a variety
of mediums, including sight, sound, touch, taste, and smell
(Bando 1991; Hallem et al. 2006; Jones and Teeling 2006;
McDonald 1989; Sasahara et al. 2012; Weber 1973). In in-
sects, pheromones are at the forefront of chemical communi-
cation between conspecifics (Hansson and Stensmyr 2011).
Since the identification of the first insect sex pheromone,
bombykol, by Adolf Butenandt in 1959, behaviorally-active
pheromone constituents from thousands of insect species have
bee discovered, with more being discovered nearly daily
(Butenandt et al. 1959; Symonds and Elgar 2007). However,
despite the intensive work on Coleoptera pheromone charac-
terization, there is no published literature regarding knowl-
edge of pheromones in Carabidae (Francke and Dettner
2005). Pheromones have been shown to be incredibly diverse
in their biosynthetic and evolutionary origins, chemical struc-
ture, blend complexity, and behavioral effects; thus, an analy-
sis of pheromones in this group would provide key new in-
sights into all of these aspects of biochemical evolution
(Francke and Dettner 2005; Tillman et al. 1999; Yew and
Chung 2015).

While many classes of pheromones have been behaviorally
characterized in the literature, many chemical ecologists and
ethologists have focused on sex pheromones, in certain con-
texts referred to as sex-aggregation pheromones (Cardé 2014;
Landolt 1997). These compounds, as the name implies, posi-
tively mediate aggregative reproductive behavior between
two individuals of the same species. Differentially produced
by members of one, sometimes both biological sexes of a
species, sex pheromones attract conspecifics of the opposite
sex of the emitter, who may in turn be releasing a different
pheromone constituent or blend into the immediate headspace
(Cardé and Baker 1984; Xu et al. 2017). If pheromone con-
stituents are detected by other conspecifics, aggregations may
form due to a signaling cascade advertising reproductive op-
portunity (Landolt 1997). Thus, although they may never be
directly detected by the olfactory receptors of conspecifics of
the same sex, they may indirectly play a role in aggregation
formation via the attraction of pheromone producing members
of the sex opposite the emitter, and so on. These can be dis-
tinguished from aggregation pheromones sensu stricto which
mediate aggregative behavior without necessarily playing a
direct role in reproductive behavior (Cardé 2014). Rather,
many aggregation pheromones are suggested to play primary
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roles in communal feeding, such as with Ips and Drosophila,
mate-finding being an indirect side-effect (Mast et al. 2014;
Raffa 2011; Wertheim et al. 2005). Of course, microhabitats
have a carrying capacity dictated by the resources available.
Higher population densities also put those aggregating at a
higher risk of acquiring disease or being parasitized if infected
individuals are present, or being preyed upon (Dempster and
Pollard 1981; Fuller et al. 2012; Ioannou et al. 2009). To
ensure that the signal cascade produced by the positive feed-
back loop of pheromone release and attraction doesn’t lead to
overcrowding, some insects will release anti-aggregation
pheromones. As their name implies, these function similarly
to allomones, deterring in this case conspecifics (hence their
classification of Bpheromones^) to maintain appropriate pop-
ulation densities. This particular pheromone-induced anti-ag-
gregation effect has been particularly well-studied the bark
beetles (Bakke 1981; Borden et al. 1987; Miller et al. 1995,
2005). Given that gregarious behavior is present in many ca-
rabid taxa, whether it be for increased fecundity, feeding, de-
fense, etc., it is conceivable that pheromones may be playing a
significant role in the formation and maintenance of such ag-
gregations (Alatalo and Mappes 1996; Gamberale and
Tullberg 1998). While they would etymologically not be clas-
sified as pheromones given the context, there may be a chem-
ical basis to the mediation of interspecific aggregation forma-
tion and maintenance as well (Walgenbach et al. 1982). Given
the potential importance of these aggregations during periods
of inactivity and their relevance to the natural history of this
group, we suggest that further investigation into these gregar-
ious behaviors are warranted (Arndt et al. 2005).

When sex pheromones, whether they be blends or single
constituents, are released at the proper concentrations, ratios,
and time, they may serve as the lynch-pin for ensuring repro-
ductive success. If there is even the slightest phenotypic var-
iation in any of these factors, especially in the chemical make-
up of a blend, the signal and expected behavior become
desynchronized (Baker 1998; Kárpáti et al. 2013; Klun et al.
1973). That is, an inappropriate signal will not likely elicit the
preferred response, such as attraction for mating. If this
desynchronization is prevalent in a great enough proportion
of the population in question, and if this truly does cause
ethological reproductive isolation, speciation events may be-
gin to occur (Wicker-Thomas 2009; Nanda and Singh 2012).
These alterations to wild-type pheromone blends are generally
the result of altered enzymatic activity, whether it be in terms
of the quantity of pheromone constituents produced, their rel-
ative ratios, or chemical identity (Albre et al. 2012; Buček
et al. 2015). In many Lepidoptera, primarily moths, most sex
pheromones are synthesized from fatty acid precursors
through a series of β-oxidation and desaturation reactions
(Roelofs and Bjostad 1984). They may then be modified via
acetylation, carbonyl reduction, or other biochemical steps to
form the final pheromone product (Bjostad and Roelofs 1983;

Roelofs and Rooney 2003). In the European corn borer,
Ostrinia nubialis, two distinct chemotypes are present
throughout the Midwestern and Northeastern United States.
The Midwestern population primarily produce a 97:3 blend of
Z:E-11-tetradecenyl acetate (TDA), while the Northeastern
population produce a 3:97 blend of Z:E-11-TDA. Behavioral
assays show that male moths of one chemotype are often not
significantly attracted to pheromone blends of the other (i.e.
New York Ostrinia are seldom attracted to the pheromone
blends of Iowan moths, and vice versa). However, in regions
where the ranges of both chemotypes overlap (e.g.
Pennsylvania), males were attracted to a 1:1 blend of the
two pheromone isomers as well as the 97:3 and 3:97 blends
(Klun et al. 1975; Kocbansky et al. 1975; Roelofs et al. 1985).
It is conceivable that sustained ethological reproductive isola-
tion over a long enough period of timemay lead to the buildup
of genetic differences such that speciation events occur
(Jennings et al. 2011, 2014). Much of the early work on pher-
omone evolution was also conducted in the genus Ostrinia,
particularly using O. nubialis and O. furnacalis, the European
and Asian corn borers respectively. Both species produce
structurally similar primary pheromone constituents, Z/E-11-
TDA and Z/E-12-TDA respectively; a desaturation shift on
either side of the twelfth carbon of the alkyl chain. In both
Ostrinia species,Δ9,Δ11, andΔ14 desaturases were detect-
ed in the abdominal pheromone production glands. However,
only Δ11-produced pheromone product (Z/E-11-TDA) was
found in O. nubialis whereas O. furnacalis produces the
Δ14 pheromone product (Z/E-12-TDA). Thus, somewhere
in the evolutionary history of Ostrinia, a switch to the utiliza-
tion of Δ14 occurred, leading to the observed chemotype of
O. furnacalis (Roelofs et al. 2002). It was hypothesized that
this may have occurred via the resurrection of a Δ14
pseudogene combined with some suppression of Δ11-
desaturase transcription or enzymatic activity in this lineage.
Similar examples of pheromone evolution and the role that it
can play in the process of organismal evolution have been
identified in other insects (Baker 2002; Ferveur 2005;
Symonds and Elgar 2003). If studies into the genetic and
biosynthetic bases of pheromone evolution are undertaken in
carabids, along with work into the neurophysiology and
pheromone-mediated behavior of this group, we could gain
valuable insights into how this group has radiated to the extent
that is has should pheromone evolution be playing a signifi-
cant role.

The Carabidae are one of the single largest families of
insects currently known (Arndt et al. 2005). Members of this
family have colonized nearly every habitat on land, and in rare
cases, some have become semi-aquatic, such as the Fairy
Shrimp Hunting Beetle, Cicindis horni (Erwin and Aschero
2004). One fossilized species has even been found in
Antarctica from the early to mid-Miocene (14–20 Ma), and
many extant species inhabit the arctic tundra (Ashworth and
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Erwin 2016; Garry 1993). Such biodiversity has captivated
the attention of biologists and numerous mechanisms have
been suggested to play a role in speciation. One such mecha-
nism is reproductive isolation, be is allopatric or sympatric
(Bolnick and Fitzpatrick 2007; Jennings et al. 2011, 2014).
Given that pheromone evolution has been shown to be
saltational in some cases, sympatric reproductive isolation
via a sudden desynchronization in pheromone emission,
olfaction, and behavior is one way in by which speciation
events can occur (Baker 2002; Ferveur 2005; Nanda and
Singh 2012; Symonds and Elgar 2003; Wicker-Thomas
2009). A broad investigation into the pheromone constituents
of this family, their biosynthesis pathways, and the rates of
evolution of the enzymes involved is necessary to make any
inferences as to what role saltational shifts in pheromone blends
may have had in the diversification of this lineage of beetles.

It is possible that we have unknowingly detected phero-
mone components in the defensive secretions and sprays of
the carabid species examined thus far (Lečić et al. 2014). As
previously mentioned, many defensive allomones may also
serve roles as alarm pheromones, being that they are an honest
signal of danger (Blum 1969, 1996; Eisner et al. 1976;
Löfqvist 1976). However, in some cases, allomones may serve
a dual role as sex pheromones. In the parasitoid wasp,
Leptopilina heterotoma, the defensive compound (−)-
iridomyrmecin functions not only as a defensive allomone,
but also as a competition avoidance cue in the context of
reproduction (Weiss et al. 2013). In the presence of other
minor constituents such as (+)-isoiridomyrmecin and other
structurally related compounds, it has also been found to func-
tion as a sex pheromone constituent (Weiss et al. 2013).
Although this type of semiochemical parsimony has not been
widely reported on in the literature, it may be more prevalent
than we are currently aware (Geiselhardt et al. 2008; Ruther
et al. 2001; Weiss et al. 2013). Given the diversity of natural
histories, as well as the diversity of their defensive allomones, it
may be carabids also employ semiochemical parsimony (Fig.
2). A natural first target for studies into alarm pheromone emis-
sion, detection, and chemically-mediated alarm behavior within
the Carabidae would be primary pygidial gland defensive se-
cretions. Not only are these compounds easily extractable from
the reservoirs, most are also commercially available or easily
synthesizable, such as benzaldehyde produced by members of
the Cicindelinae (tiger beetles). An added benefit to utilizing the
Carabidae as amodel for studying alarm pheromone behavior is
that the gland constituents are relatively simple within a species,
most taxa usually only containing one to a few major com-
pounds and occasionally a small number of minor constituents.
While the usual challenges of running successful behavioral
assays on insects would persist, many steps related to the iden-
tification of multiple compounds produced in trace quantities
would be eliminated due to the high quantity and relative ho-
mogeneity of intraspecific gland constituents in certain taxa.

V: Next-Generation Chemical Ecology

Over the past 60 years, our ability to identify insect semio-
chemicals has greatly improved. More than 3500 unique com-
pounds have been discovered in thousands of taxa, belonging
to nearly every insect order (El-Sayed 2018). Many of these
compounds have been assigned semiochemical classes and
are hypothesized to have specific influences on insect behav-
ior based on the ecological conditions of their emission. In
contrast, the underlying genetics of semiochemical biosynthe-
sis in many insects remain understudied, which is reflected by
a lack of genetic data for many insect groups including cara-
bids. Now, with the advent of next-generation sequencing
technologies, many of the financial and logistical barriers that
previously impeded the high-throughput study of genes in-
volved in insect semiochemical biosynthesis have been great-
ly diminished. Studies can be conducted to identify genes
involved in physiological processes for whole insect bodies,
specific glandular tissues, and even individual cells
(Ziegenhain et al. 2017), allowing for high-resolution analyses
of differential gene expression between or within tissues.
Integrating next-generation sequencing with analytical chem-
istry and biochemical techniques can allow for an enhanced
understanding of semiochemical production and evolution
throughout Insecta. To advance understanding of carabid
semiochemistry specifically, we suggest an integrative ap-
proach that combines tissue-specific transcriptomics with
spectroscopic and biochemical assays to elucidate complete
biosynthetic pathway(s) for semiochemicals.

Next-generation sequencing technologies have revolution-
ized the method by which gene expression can be studied with-
in an organism, tissue or cell. In particular, whole transcriptome
sequencing, also known as RNA sequencing (RNA-Seq), can
be used to analyze context-dependent gene expression utilizing
billions of sequenced base pairs (Conesa et al. 2016). For ex-
ample, transcript abundance can be used to identify genes that
are differentially expressed between samples (e.g. tissue of in-
terest relative to the whole body) and have putative functions in
tissue-specific biosynthetic processes. RNA-Seq has already
proven to be a successful method for the identification of can-
didate genes involved in pheromone biosynthesis (Buček et al.
2015, 2016; Nadeau et al. 2017; Vogel et al. 2010). For in-
stance, transcriptome sequencing of the Heliothis virescens
pheromone gland revealed high expression of several different
candidate genes, which may play roles in pheromone biosyn-
thesis (Vogel et al. 2010). Many of these were annotated as
alcohol and aldehyde oxidases, fatty acid synthetases and re-
ductases, and various fatty acid desaturases, which corroborates
findings from previous studies on the biosynthesis of noctuid
pheromone constituents that these genes are involved in pher-
omone biosynthesis (Teal and Tumlinson 1986, 1988).
Similarly, RNA-Seq may be a promising tool for the identifi-
cation of genes expressed in carabid tissues that biosynthesize
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semiochemicals, which could then serve as candidates in stud-
ies investigating biosynthesis (Fig. 3).

While RNA-Seq can provide support for tissue-specific
patterns of gene expression, this method cannot confirm
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Fig. 3 Workflow showing how methods from ethology, chemistry, and
molecular biology can be integrated toward the goal of elucidating the
evolution of chemically-mediated insect-insect interactions. (a)
Behavioral observations are made of a carabid beetle spraying pygidial
gland contents, which are detected by a spider (allomone) and a
conspecific (alarm pheromone). (b) Interested in what chemicals are
mediating this interaction, GC-MS analyses are first conducted on
gland extracts. (c) Behavioral assays are then conducted using
individual gland constituents or blends to characterize their role in

behavior (if any). (d) RNA is extracted from glandular and non-
glandular tissue and is sent for transcriptome sequencing. (e)
Differentially expressed candidate genes that may be involved in the
biosynthesis of behaviorally active compounds are identified.
Phylogenetic trees of gene families may be reconstructed to infer the
evolution of semiochemical production within a clade. (f) Gene
knockdown or gene knockout is used to confirm the role of candidate
gene products in the biosynthesis of the semiochemical of interest.
Subsequent analyses could be conducted as dictated by research interests
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which transcripts are functionally relevant for a given meta-
bolic process (Fig. 3). Two promising techniques in studying
the role of gene products in the biosynthesis of semiochemi-
cals are RNA interference (RNAi) and CRISPR/Cas9, which
can be used to knock down or knock out gene expression
(Cong et al. 2013; Fire et al. 1998). The result is an observable
phenotype, such as the absence or reduced production of a
chemical constituent observable via gas chromatography–
mass spectrometry (Li et al. 2013). Thus, from a set of differ-
entially expressed genes, possible precursors, cofactors, and
potentially even intermediates in the pathway can be inferred
at least in-so-far as it narrows down the list of candidates
involved. However, with CRISPR/Cas9, it is necessary for
injections to be made in the egg stage of the insect, and thus
a well-maintained colony is required (Kistler et al. 2015).
Where this is unrealistic due to the complex life history strat-
egies of many insects and difficulty of rearing, RNAi may
serve as an alternative for assessing gene function, as it can
be used at various life stages once optimized.

Radiolabeled precursor incorporation followed by candi-
date enzyme characterization should be combined with gene
knockdown and knockout methods to assess whether genes
expressed within carabid pygidial glands play a role in
converting chemical precursors to semiochemical constitu-
ents. A prime example of such in vivo radiolabeled assays
comes from Attygalle et al. 1991b, in which the injection of
D8-L-valine into the carabid beetle Scarites subterraneus was
shown to be highly incorporated into methacrylic acid and
isobutyric acid, two pygidial gland allomones, via GC-MS
analysis of gland extracts (Attygalle et al. 1991b). An al-
ternative to injections is the incorporation of radiolabeled
precursors into the diet, which is particularly useful if the
insect is too small to handle injections or if the stress and
physical damage induced by a needle is undesirable. This
method was historically popular in studies examining the
essential amino acid requirements of insects (Kasting and
McGinnis 1958; Rock and King 1966). The same method
of feeding an insect radiolabeled candidate precursors,
preferably those more immediately upstream of the com-
pound(s) of interest, could also reveal which if any are
incorporated into, for example, a carabid semiochemical
constituent.

To validate the role of candidate genes in carabid semio-
chemical biosynthesis, protein expression followed by enzy-
matic assays can be performed on individual steps in biosyn-
thetic pathways. For example, expression vectors can be de-
signed from the candidate genes discovered via RNA-Seq for
their introduction into cell lines (Ohlen et al. 2016; Steiner
et al. 2018; Zhang et al. 2018). Once the purified protein
isolate has been acquired, physiological conditions can be
replicated by adding appropriate concentrations of relevant
cofactors and the substrate of interest (Ohlen et al. 2016;
Steiner et al. 2018; Zhang et al. 2018). The reaction can

essentially be performed in vitro, and the conversion of sub-
strate to product can be confirmed using GC-MS analysis. By
conducting such assays, candidate genes identified in RNA-
Seq experiments can be functionally validated via the confir-
mation of their role in semiochemical biosynthesis at the
enzyme-substrate level.

To gain a deeper understanding of the processes by which
semiochemical biosynthetic pathways evolve and diversify,
the evolutionary history of the gene families involved should
also be considered. A previous study of Lepidopteran fatty
acid desaturases, which are important genes for pheromone
biosynthesis in this order, serves as a prime example of how
tissue-specific RNA-Seq can be combined with phylogenetics
and molecular evolutionary analyses. Phylogenetic recon-
struction of the Lepidopteran fatty acid desaturase gene family
revealed interesting implications for pheromone evolution in
moths, including the existence of many functionally con-
served, yet inactive clades that lie dormant within moth ge-
nomes (Buček et al. 2015). In addition, single point mutations
were suggested to alter the substrate specificity of two
paralogous enzymes, a Z11-desaturase/conjugase and an
E/Z-14 desaturase in Manduca sexta (Buček et al. 2015).
This shift in specificity via the mutation of a small number
of amino acids was suggested to be a potential mechanism by
which novel pheromone constituents could evolve. Similar
studies in Carabidae have the potential to reveal interesting
gene birth, death, and functional divergence events associated
with shifts in semiochemical production (Fig. 3).

Conclusions

The exocrine chemistry of Carabidae have been investigated
heavily over the past 60 years, and thanks to the efforts of
many dedicated carabidologists and chemical ecologists, we
have amassed a rich body of allomone literature across the
family (Moore and Wallbank 1968; Will et al. 2000;
Schildknecht et al. 1968a, b). As important as this is to under-
standing the evolution of chemical defensive strategies, it
could be complimented by studies of other chemically-
mediated methods of intraspecific and interspecific communi-
cation. Without knowledge of how carabids mediate their
complex interspecific aggregations, find hosts for predation
deep within volatile-rich soil, survive the selective chemical
screening by ant colonies, and ultimately find their mates in a
complex world of chemical and visual cues, we leave much
unknown about this ecologically important and diverse line-
age. In addition, understanding the biosynthesis of carabid
semiochemicals and the evolution of the complex behaviors
that they mediate is arguably as necessary as understanding
the chemicals and behaviors themselves. Few studies have
elucidated the underlying genetics of semiochemical biosyn-
thetic pathways in insects, especially within Carabidae.
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Therefore, we strongly support expanding studies of carabid
semiochemistry, olfaction, and behavior.
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