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ABSTRACT 

A theoretical explanation is given for the shape of the incisions on the birch leaf cut by 
the birch leaf roller (Deporaw &Mae). The theoretical predictions for the incisions agree 
well with the real patterns. The previous view, that the leaf cone construction is determined 
by the principle of optimal cost, is refuted. 

1. INTRODUCTION 

The Rhynchitinae provide peculiarly for their descendants. These beetles 
twist leaf cigars as cradles to protect and feed their grubs [l, 21. One of the 
most interesting and most studied species of the Rhynchitinae is the birch 
leaf roller (Deporaur betulae). This beetle cuts S-shaped incisions on the leaf 
sheet before it begins rolling the leaf into a slender cone. 

Deporaus betulae is very common in central Europe. In spring the 3-5 
mm long female beetle makes some funnel-like leaf packs from the leaves of 
the birch. The female puts its eggs into these leaf cones. It twists the leaves 
in a definite way so that the rolled leaves will not get untied [3-141. 

It may be observed that the birch leaf roller twists its cigar in the 
following way [15-241. On the upper part of the leaf, near the peduncle, the 
beetle cuts into the border of the leaf sheet, and makes the first S-shaped 
incision towards the midrib. Then the beetle chews the midrib, and climbs 
over to the other leaf half. Then it cuts the second S-shaped incision from 
the midrib to the leaf edge, but this is flatter than the first. 

goon the leaf begins to droop; then the female starts to roll it. It climbs 
over to the back side of the leaf and rolls the first leaf half with its feet into a 
slender cone. Then it twists the second leaf half in a similar way around the 
rolled first leaf half. Thus arises a massive leaf cone from the leaf. 

The beetle climbs into this cone and cuts into the skin tissue of the leaf at 
3-5 points. It puts its eggs in these cuts then crawls out of the leaf funnel, 
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FIG. 1. The Deporuus betulue’s leaf twist. The front side of the birch leaf. In stages 

l-2 the beetle cuts the incisions; in 3-4 it rolls the leaf cone from leaf half I. In stages 1-4 

the beetle works on the back side of the leaf; in 5-9 it twists leaf half II around the leaf 

cone; it then works on the front side of the leaf. In stages lo-11 the beetle closes the leaf 

funnel below. 0, position of the beetle during the twist on the front side; 0, its position on 

the back side [l-24]. 

rolls the under edge of the cone into a small cornet, and so closes its eggs 
into this green package. The task takes about 30-60 minutes. When a female 
has finished a leaf funnel, it starts another. 

In a few months the wind or the rain tears the brown leaf funnels from 
the branches. The grubs gnaw through the walls of the leaf cigars and dig 
into the earth, where they become chrysalises. In Figure 1 we can see the 
main stages of the Deporuur betulue’s twist [5, 15, 20-241. 

Only the female beetle is able to roll leaf cigars. If it is interrupted in its 
activity, the work does not suffer, because the female can continue the twist 
where it stopped [5, 7, 17, 211. 

In this work I show that the second incision stands in a tight relation with 
the leaf edge: the incisions are placed on the leaf sheet to make it possible 
for the beetle to roll the relatively rigid leaf sheet easily to make a regular, 
slender leaf cone. I give a theoretical explanation for the shape of the 
incisions. This mathematical description differs from the previous geometri- 
cal explanations, which tried to describe these incisions by constructing the 
evolute of the leaf’s shape [19, 21-241. A widespread view in the biological 
literature [3-201 is that the mathematical aspect of the cone construction of 
the birch leaf roller is such that the serpentine incisions are the ideal 
geometric shape to minimize the work needed to roll the leaf halves. I refute 

that in the Appendix. 
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Figure 2 shows the birch leaf cut and rolled by the birch leaf roller. First 
we examine the second incision (II). The point A is the root of the peduncle 
of the leaf, P is the peak point of the cone, B is the root point of incision II 
on the midrib, and Q is the tip of the leaf. 

The flexibility of the leaf sheet plays a primary role in the physics of the 
twist of the leaf, so consider the torque needed to roll a sheet around a cone 
with half aperture angle OL (Figure 3). The thickness of the sheet is a; the 
width of the rolled sheet along the generatrix of the cone is b. The nearer 
edge of the rolled sheet is at distance x along the generatrix from the peak of 
the cone. If E is the Young’s modulus of the sheet, the torque needed to 
bend a sheet with rectangular profile is 

where a and b are the sides of the rectangle, and R is the radius of 
curvature. We divide the sheet into stripes with width dx and take into 
consideration that at distance x from the peak of the cone the radius of 
curvature is R = x tana. The torque needed to roll the cone is 

rib Eb3dx’ M=S 12x’tancu x 

incision 
,,’ 

;,’ 

: 

leaf half 

I 

J 

(2) 

FIG. 2. The birch leaf (without perforation of the edge) cut by the birch leaf roller. 

The point P is the peak of the leaf cone. 
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FIG. 3. Twist of a sheet with thickness a and width h around a cone with half 

aperture angle a. The nearer edge of the sheet is at distance x from the point P. 

We can see from (2) that if x + 0 then M + 00. From this we get: 

Observation I. The Deporaus betulae must cut incision II in such a way 
that during the roll the distance s is not too small, because the torque 
needed to roll leaf half II would then be very great, or too large, because 
then little leaf mass would roll into the leaf cone. The beetle must choose a 
small distance ?%; then it cuts incision II so that the edge of the leaf moves 
away quickly from the point P during the twist, so x increases rapidly, M 

decreases rapidly, and the part of leaf half II near the point P can be rolled. 

When the beetle is ready with the twist of the leaf halves, it fastens the 
leaf layers of the cone together with its proboscis; thus the leaf cone cannot 
uncoil. The last leaf layer must be tongue-shaped so that it can be fastened 
easily by the beetle, i.e., the torque M must be small. It can be seen from (2) 
that M is small if b/x is small. Consequently the last, tongue-shaped layer 
must be narrow and its edges must be distant from the point P. From this 
we obtain the second observation. 

Observation 2. The Deporaus betulae cuts incision II in the leaf sheet so 
that the last leaf layer is a relatively narrow, long tongue far from the peak 
point of the leaf cone. 

Since the leaf cone nourishes the grubs, it is very important to have 
enough leaf mass in it. From this we get the third observation: 

Observation 3. The Deporaus betulae must roll as much leaf mass as 
possible into the leaf cone. 
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FIG. 4. For the theoretical calculation of incision II of the birch leaf roller. The points 

P, Q&, Q, are on the generatrix of the cone. 

So Depot-ma betulue must balance its strategy: it uses the most leaf mass 
possible given that it must overcome the resistance of this mass to rolling of 
the leaf cone. 

Consider the angles between the borders of the leaf sheet rolled and the 
generatrix of the cone (the angles 8, and 8, in Figure 4). If these angles 
differ very much from each other during the twist, then the last, tongue- 
shaped layer will be suddenly very wide or narrow; either one would 
contravene Observation 2. So it is useful to follow the following method in 
the twist of leaf half II: 

Method I. Incision II must be cut in such a way that the angles between 
the edges of the leaf sheet rolled and the generatrix are equal. 

This method is consistent with the observations. Referring to Figure 4, 
assign polar coordinates with origin at P, and angles measured from the 
midrib AQ of the leaf. The curve of the leaf border R(q) is given. We want 
to determine the curve r(cp) (incision II), starting at the point B, for which 
8, = 8, = 6 for every cp. We can see in Figure 4 

tans =a r dr ’ 
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We get from this 
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r(v) R(cp) 
-=-R’o’ r’(v) 

From (6) we obtain 

r=c/R, but r=rO for R= R,, so c= R,ro. 

2 

3 

FIG. 5. The theoretically calculated incision II of the birch leaf roller if the perforation 
of the leaf border is taken into consideration. The free parameters of the family of curves 
are the distances p and G. 
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So the theoretical curve of incision II according to Method 1 is the follow- 
ing: 

-- 
WO 

r(v)=m= 
PQ . PB 

R(v) ’ 

I determined and plotted this curve for the real shape of the birch leaf, and I 
got the family of curves in Figure 5. The free parameters in (7) are the 
distances PQ and 2. 

First I took the perforation of the leaf border into consideration (Figure 

5). Incision II is closely connected with the leaf edge [see (7)], so the curve 
r(cp) is perforated too. The real incision II of the Deporuus betulue is 
smooth; consequently the perforation of the leaf border is not important in 
the twist of the leaf. That is understandable, because the teeth of the leaf 
edge are negligible compared with the whole leaf sheet; the perforation of 
the leaf edge can have little influence on the torque during the twist. 

A determination of the curve r(y) by (7) for the leaf border without 
perforation gives the family of curves in Figure 6. The curves marked (0) in 
Figure 6 resemble the real incision II of the birch leaf roller [l-24]. 

3. THE SHARE OF THE FIRST INCISION OF THE 
DEPORA US BETULA E 

Deporaus betulae begins the twist of the leaf on the back side of leaf half I 
as in Figure 7 [17,19,21-241. It first makes a small cone from the leaf sheet 
on the leaf border and then rolls the whole of leaf half I around this core. A 
regular, slender cone is formed; one of the genera&es of this cone is the 
midrib of the leaf. The function of the small, initial cone can be understood 
using (2): the beetle decreases b in order to diminish the torque. 

A suitable microclimate can be insured for the grubs if the peak of the 
cone is well closed: there may not be any gap on this peak. Figure 8(b) 
shows the situation of the leaf cone near its last stages, and Figure 8(a) 
shows the situation of leaf half I when it is uncoiled. It can be seen that the 
external layer of the leaf cone allows the internal core to rise out easily and 
to close the peak of the leaf cone only if leaf half I forms a slanting cone 
section in the uncoiled stage of Figure 8(a). 

From this we get the second method followed by the birch leaf roller: 

Method 2. The Deporaw betulae cuts incision I so that after the twist of 
leaf half I the external leaf layer constitutes a slanting cone section. This can 
be realized if the uncoiled leaf half I forms a slanting cone section. 

On the basis of Method 2 the theoretical incision I is the curve of a 
slanting cone section laid out in the plane. We place the leaf cone in the 
system of coordinates of Figure 9. The position vector of the points of the 
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FIG. 6. As in Figure 5, but the perforation of the leaf border is not taken into 

consideration. The marked theoretical curves are very similar to the real incision II of the 

birch leaf roller. 
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FIG. 7. The birch leaf roller twists a regular. closed, slender leaf cone from leaf half I. 
The back side of the leaf can be seen [17, 19, 21-241. 

cone is 

p=(~l,~,~)=(ztanacoscp,ztancllsincp,-z), z > 0. (8) 

We intersect the cone with a plane going through the point 

PO = (x,,y,,z,) = (sirm,O, -coscu)h. (9) 

Let the plane be parallel with the y axis, and let the angle between this plane 
and the x axis be j3. The normal vector of the plane is 

/I = (-sin/3,0,c0s/3) (10) 
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FIG. 8. (a) Such a slanting cone section can uncoil from leaf half I rolled by the birch 

leaf roller. (b) The slanting cone section in (a) assures that the internal core of the leaf cone 

can rise out easily from the external layers during the leaf twist, and this internal core can 

form the closed peak of the leaf cone. 

The coordinates of the plane are R = (R,, R,, R,); the equation of the plane 

is 

(R-P,)n=O. (11) 

The coordinates of the points of the curve which is determined by the section 
of the plane and the cone are 

R,=ztanarcoscp=p,, 

R,=ztancrsincp=p,, 

R,=-z=p,, 

and from (ll), 

-RR1sin/3+R,cosj3=-x,sinP+z,cosp. 

We get from (12) 

xg sin/3 - z,cosp 
‘= cosj?+tanasinj3coscp’ 

We can write on the basis of Figure 9 

(14 

(13) 

cp=s/sinlY, 

p = z/cos a. 

(14) 
(15) 
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FIG. 9. For the calculation of the curve of a slanting cone section laid out flat. 

The curve of the cone section is 

P(h,%8?6) =h 
1+tancutanp 

1+tancrtan/3cos(G/sincr)~ (16) 

We apply the above to the birch leaf (see Figure 10). h can be determined as 
a function of the coordinates of PO. The line ?%, is a tangent of the leaf 
border, so we can write by Figure 10 

oA==$J-x, y’(x) =$. (17) 

It is clear that 

h=[yZ+(OA+x)2]1’2. (18) 
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FIG. 10. For the theoretical calculation of incision I of the birch leaf roller on the 
basis of Method 2. 

From (17), (18) we obtain 

(19) 

Using (16) and (17), the theoretical curve of incision I is: 

=y(x) l+A 1 I 
l/2 

1+tancutan/3 

Y2( x1 l+tancrtan@cos(G/sina) (20) 

The position of the point PO on the leaf edge determines the value of the 
angle a. It is known that 

p-h for 6-O and a=arctany’(x). (21) 

Using (20) and (21), we obtain 

sina= arctany’(x) 
2n ’ 

tana= 
arctan y’(x) 

{4T+rctally’(x)]2}1’z~ 
(22) 

Using (20) and (22), we obtain the following expression for the theoretical 
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PtYw,Y’wA~l =y(x) 1+ [ j7g2 
[arctany’(x)] tanp 

X 
l+ {4&[ arctan y’( X)1*} 1’2 

{ arctan y ‘( x) } tan p (23) 

l+ (46[ 
cos i 

2rr8 ’ 

arctan y’(X)]‘} 1’2 
arctan Y’(X) 1 

I have plotted the function p[ y( x), y’(x), B, 61 for the birch leaf in Figure 
11. The position of Pa was fixed on the leaf edge. The curves of Figure 11(b) 
are very similar to the real incision I of the birch leaf roller (see [l-24]). 

4. CONCLUSIONS 

Method 1 explains incision II of the birch leaf roller. The microstructure 
of the leaf edge can be disregarded. Method 2 explains incision I of the 
Deporam betulae. The theoretically calculated incisions on the basis of 
Methods 1 and 2 agree well with the real patterns for some values of the free 
parameters. 

A widespread view in the biological literature is that the birch leaf roller 
cuts its incisions so that the work needed to roll the leaf is minimized [3-201. 
For example, J. 6. Rozen writes as follows: “The arresting mathematical 
aspect of the cone construction is that the serpentine incisions are the ideal 
geometric shape to minimize the work needed to roll the leaf halves” [15]. 
This view is based on the principle of optimal cost. 

In the Appendix I calculate the work needed to roll the whole of leaf half 
II and minimize this work under the additional condition that the leaf 
surface rolled into the leaf cone is given (constant). This leads to a problem 
of variational calculus. This problem can be solved. 

I obtained nearly arc-shaped curves for the optimal incision II. Since the 
real incision II is not an arc, the birch leaf roller does not cut its patterns on 
the basis of this variational principle. The work needed to roll the leaf does 
not play a primary role in the leaf twist. 

The leaf is drooped during the twist, so the work needed to roll is not 
large; the beetle does not do appreciable surplus work owing to not cutting 
the leaf sheet in an arc. Methods 1 and 2 play the primary role in the leaf 
twist, and these determine the optimum shape of the incisions, which prevent 
the uncoiling of the rolled leaf. 
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FIG. 11. The theoretically calculated incision I of the birch leaf roller. The free 

parameters are the angle /3 and the position of the point PO on the leaf edge. The half 

aperture angle of the leaf cone is a=llS”, and the position of PO does not change. Only 

the angle /3 varies. 

APPENDIX 

Al. CALCULATION OF THE WORK NEEDED TO ROLL LEAF HALF IT 

The main radius of curvature at any point of a cone is (see Figure 9) 

R=hB, B=tanLv (A-1) 

We consider the twist of a sheet with Young’s modulus E around a cone 
with half aperture angle (Y (Figure 12). At the examined point the neutral 
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FIG. 12. Elementary piece of a leaf sheet twisted into the leaf cone. The local radius of 

curvature is x tancr, the nearer edge of the sheet element is at distance x from the peak of 

the cone, the thickness of the sheet is a, and the width of the sheet element is dx. The 
neutral surface is at distance L(x) from the surface of the cone. The elementary piece of 

the sheet with thickness dz is at distance z from the neutral surface. 

surface is at distance L from the surface of the cone; the local radius of 
curvature is Bx. If the functions of the borders of the rolled sheet are r(q) 
and R(q) from the peak point of the cone, then the required force and 
torque are 

B=jj 
REu(a-2L) 

2(Bx+L) dx’ (A-2) 

(A-3) 

The existence of the neutral surface requires F = 0. The neutral surface is 
determined by the minimization of M. We thus have the following varia- 
tional problem: We look for the minimum of M under the additional 
condition F = 0. 

In this case the minimization must be done using Lagrange’s function 

9Lp, E[(a-L)3+L3] _AEu(u-2L) 
3(Bx+ L) 2(Bx+ L) (A-4) 
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where X is the Lagrange multiplier. The function L(x) is sought. We use for 
(A-4) the Euler-Lagrange equation [25]: 

&&- ata& -= O, L’(x) =g. (A-5) 

Thus we get 

a9 aE -= 
JL (Bx+L)* 

-Bxa+2BxL-$+LziBxA+F) =0. (~-6) 

From this, 

B’x”+Bx(a-A)+$--$ 
I 

l/2 
- Bx. (A-7) 

We can determine the Lagrange multiplier h from the equation F = 0 using 
(A-2): 

dx R L(x) 
Bx+ L(x) - r Bx+ Lag=’ / (A-8) 

After performing the integrations we obtain the following equation: 

F=B(R-r)+[B ‘r2 + Br( a - A) + a2/3 - ah/21 1’2 

- [ B2R2 + BR( a - A) + a2/3 - aX/2] 1’2 

- ; log, 
2B2R+B(a-h)+2B[B2R2+BR(a-h)+a2/3-ah/2]1’2 

2B2r+ B(a-X)+2B[B 2r2 + Br( a - A) + a2/3 - ah/21 1’2 

= 0. 

The work needed to roll leaf half II is 

(A-9) 

W = 6’&i RE((a-L)3+L3]xdx 

3(Bx+L)’ ’ 
(A-10) 

where the angle cp is measured from the midrib of the leaf, and the origin of 
the system of coordinates is the peak point of the cone. The angle ‘p* is 
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determined by the following equation: 

r((P*) = NT*). 

A2. MINIMALIZATION OF W 

We minimize W for a given rolled leaf surface: 
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(A-11) 

T= c*$r2( ‘p) dq + LI$R’( cp) dcp = [‘ir’( ‘p) dcp + t. (A-12) 

From this the additional condition of our variational problem is 

2(T- t) =r*r’((p) drp, 

where the surface 2( T - t) is constant. Lagrange’s function is 

(A-13) 

R E[b - L)’ + L3] X dx _ ir2 

3( Bx + L)2 
, 

where x is a Lagrange multiplier. The Euler-Lagrange equation is 

d aa aP 
zar’o-m=Oy 

r’(q) =$$. 

(A-14) 

(A-15) 

We substitute (A-14) into (A-15) and obtain 

a22 
ar =o, whence -2rX= 

Eax[ a2 -3aL(x)+3P(x)1 

3Px+ +)I2 xcr 
(A-16) 

We introduce the following notation: 

h 1 = B2r2 + Bar + 2 
3 ’ 

h,=Br+;, 

h, = -2(3Xh, + Eu3 + 3Ea’Br + 3EaB2r2), 

h, = 3h2(2X + Eu), h5=3Eu(a+2Br), 

h, = 
2h,h, + h:h, 

hi ’ 
h, = 

hi - h$h, 

h’, . 
(A-17) 



148 GABORHORVATH 

The Lagrange multiplier A can be determined using (A-17): 

(A-18) 

The other Lagrange multiplier i is determined from (A-16): 

x= -Ea[a2 -2aL(r)+3L2(r)] 

6[Br+L(r)]’ . 
(A-19) 

I solved (A-9) for r using Newton’s tangent method, applying the following 
recursion: 

F(c) r r+l = ri - - 
F’( I;) ’ 

F’( r) = $ . (A-20) 

We carry out the numerical solution in the following way. We determine 
F by (A-9) for one initial value r. of r using the Lagrange multiplier X. First 
X is taken from (A-17) and (A-18); then we determine the force F; then with 
the application of the recursion (A-20) we determine the next approximate 
root ‘; and repeat all these steps until the successive roots q fall within a 
determined error bound. 

We must still determine the Lagrange multiplier x. We cannot express i( 
as (A-13) because of its extreme complexity, but 1 determines r(q = 0) = 
r(0). We choose an arbitrary r(0); then, solving (A-9) for A by substituting 
r = r(O), R = R(O), substituting the resulting X(0) into (A-7), determining 
L[r(O), X(O)], and substituting it into (A-19), we get x. 

X can be determined from (A-9) only numerically (for example by 
Newton’s tangent method). We must give one initial value of X,, which can 
be estimated in the following way: 

x= Br(a-2L)+a2/3- L2 
a/2+ Br (A-21) 

Using 0 < L < a, we obtain 

Br + 2a/3 
-‘Br+a/2 

<A<aBr+a’3 
’ Br+a/2’ 

(A-22) 

The numerical solution shows that the physically valid sign in (A-18) is the 
+. In Figure 13 we can see some results of the calculations. I always 
obtained arcs for r(y); the radius of the arc is r(0). 
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f3 P 0 

FIG. 13. The theoretically calculated incision II of the birch leaf roller, if it is 
supposed that the beetle cuts incision II so that the work needed to roll leaf half II can be 
minimized under the additional condition that the leaf surface rolled into the leaf funnel is 
given (constant). 

Thanks are due to Professor Pril S.&ky, Dr. Ottb Merkl, Dr. Driniel Gcil, 
and P&er Brintay for their help, advice, and support. 
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